
- •1 Часть
- •2. Кризисы и революции в естествознании. Физические революции как основные вехи развития естествознания. Современное естествознание и необходимость очередной физической революции.
- •Билет 3. Научная методология: физическое моделирование и математическое описание. Ограниченность моделей и представление об абсолютной и относительной истине.
- •Билет 4. Явление самоорганизации в природе. Основные понятия синергетики: флуктуация, бифуркации, аттракторы, фракталы.
- •Билет 5. Концептуальные представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, микромир и макромир.
- •Билет 6. Постулаты теории относительности Эйнштейна.
- •7. Механика как основа физики. Основные законы и понятия механики.
- •8. Законы сохранения количества движения (импульса), энергии и момента количества движения.
- •Билет 9. Концептуальные представления о различиях в строении твердых, жидких и газообразных тел.
- •Билет 10. Концепция атомизма от демокрита до наших дней. Планетарная модель атома резерфорда. Корпускулярно-волновой дуализм и волны де Бройля.
- •Билет 11. Основные представления современной химии – атом, его ядро, молекула, элемент, вещество, ион, катион, анион, аллотропия. Эволюционная химия.
- •12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И. Менделеева.
- •Билет 13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.
- •14. Галактики и их классификация. Наша Галактика.
- •15. Современные представления об эволюции звезд и звездных систем.
- •16. Солнечная система. Законы небесной механики – законы Кеплера. (Парадоксы Солнечной системы.)
- •17. Гравитационное взаимодействие тел. Закон Всемирного притяжения Ньютона. (гравитационный парадокс. Разрешение парадокса в эфиродинамике.)
- •19. Первое и Второе начало термодинамики космологический парадокс «Тепловой смерти» Клаузиуса.
- •20. Современные представления о происхождении и строении Земли. Геосферы Земли – ядро, мантия, кора, атмосфера.
- •21. Электрический заряд и электрическое поле, законы электростатики. Напряженность, электрическая индукция, взаимодействие зарядов, закон Кулона. Энергия электрического поля.
- •22. Электрический ток и магнитное поле. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •Билет 23. Геометрическая оптика и волновая теория света. Явление интерференции и дифракции.
- •Билет 24. Закон Хаббла. Красное смещение спектров и объяснение эффектов.
- •Билет 25. Гипотезы происхождения жизни на Земле. Теории эволюции жизни.
- •Билет 26. Основные теории антропогенеза.
- •Билет 27. Наследственность и изменчивость. Синтетическая теория эволюции.
- •Билет 28. Экология. Сущность экологического кризиса и меры по его предотвращению.
- •Билет 29. Биосфера Земли. Взаимодействие организмов со средой обитания.
- •30. Основные научные достижения в биологии и генетике. Роль днк и рнк в системе управления генетической информацией.
- •Билет 31. Генная инженерия и клонирование.
- •32. Сознание и интеллект. Человек и эмоции.
- •33. Понятие о ноосфере и ноосферности мышления. Работы в.И. Вернадского. Роль разума в дальнейшей эволюции Земли и ее биосферы.
- •34. Роль космических факторов в регуляции жизни и сознания. Исследования Чижевского. Биоциклы человека.
- •Билет 35. Основные экологические проблемы на современном этапе.
- •Билет 18. Космологический фотометрический парадокс Шезо-Ольберса. Парадокс как результат неучета всех физических факторов.
- •2 Часть
- •1.Формы движения материи. Кинетическая и потенциальная энергии, их природа и взаимопревращения.
- •2.Концепции симметрии и асимметрии. Природные проявления симметрии.
- •3.Понятие о взаимосвязи и размерности физических величин.
- •4.Системы измерений как язык анализа качества и количества. Система си в единицах физических величин.
- •5.Сущность процесса измерения. Погрешности измерений, их виды, причины.
- •6. Средства измерений в познании мира. Основные метрологические характеристики средств измерений; методы измерений, (методические и инструментальные погрешности-№5 смотри)
- •7. Случайность как непознанная закономерность. Случайные и систематические погрешности, их учет и устранение
- •10. Классы точности измерительных приборов. Абсолютная и относительная погрешности
- •14. Изменение полей при движении объектов. Эффект Доплера и его применение в технике
- •15. Квантовые генераторы: физическая сущность, виды и особенности лазеров, области применения. Квантовые явления в физических средах.
- •16. Квантовые эффекты в микромире. Понятие о спектрах излучения и поглощения, спектрометрия
- •17. Проблема отражения и запоминания информации. Понятие о голографии, области применения
- •18. Физические основы акустики. Эволюция средств звукозаписи и воспроизведения звука
- •19. Основные законы цепей постоянного тока. Техническое использование постоянного тока
- •20. Основные закономерности цепей переменного тока. ( тут фигня к-то! См другое)
- •22. . Закон Фарадея и принцип действия электрических трансформаторов.
- •23. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов
- •24. Электромагнитное излучение и его природа. Шкала электромагнитных волн, области применения
- •27. Существующие и альтернативные источники энергии. Энергетические преобразователи, их виды и применение
- •28. Ядерная энергия и проблемы ее использования.
- •29.Поведение веществ в электрических полях. Диэлектрики и пьезоэлектрики и их применение
- •Поведение веществ в магнитных полях. Ферромагнетики и ферриты, их применение
- •31. Органические вещества и соединения естественного и искусственного происхождения. Полимерные материалы. Термопласты и реактопласты и их применение.
- •32.Дефект массы и энергии связи в ядрах атомов.
- •33.Радиоактивность и закон радиоактивного распада.
- •34. Основные положения молекулярно- кинетической энергии.
- •35. Проблемы техносферы и понятие о ноосфере.
23. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов
На электрический заряд, движущийся в магнитном поле, действует сила Лоренца, равная
где q - величина заряда, Кл; — скорость заряда, м/с; В — магнитная индукция поля, Г. Эта сила направлена перпендикулярно векторам и В.
Если проводящий контур движется в стационарном магнитном поле, то в нем наводится э.д.с. индукции, поскольку на каждый свободный заряд — носитель тока в проводнике, перемещающийся вместе с проводником в магнитном поле, действует сила Лоренца, поэтому на отрезке длиной l, движущемся в поле с магнитной индукцией В со скоростью возникает э.л.с., равная
E=-B l , B
На этом основаны электромеханические электрогенераторы, в которых на статоре размещена обмотка, через которую пропускается постоянный ток, в результате чего в зазоре между статором и ротором (якорем) создается сильное магнитное поле. На поверхности ротора уложена вторая обмотка, в которой при вращении ротора и пересечении в результате этого силовых линий магнитной индукции создается электродвижущая сила.
Сила Лоренца используется в кольцевых ускорителях заряженных частиц для многократного прогона их (в процессе разгона) по одному и тому же пути. Оказываемся радиус обращения заряженной частицы в поперечном магнитном поле не зависит от скорости частицы.
24. Электромагнитное излучение и его природа. Шкала электромагнитных волн, области применения
различных частотных диапазонов.
Источником электромагнитного излучения всегда является вещество. Но разные уровни организации материи в веществе имеют различный механизм возбуждения электромагнитных волн.
Так электромагнитные волны имеют своим источником токи, протекающие в проводниках, электрические переменные напряжения на металлических поверхностях (антеннах) и т. п. Инфракрасное излучение имеет своим источником нагретые предметы и генерируются колебаниями молекул тел. Оптическое излучение происходит в результате перехода электронов атомов с одних орбит возбужденных) на другие (стационарные). Рентгеновские лучи имеют в своей основе возбуждение электронных оболочек атомов внешними воздействиями, например, бомбардировкой электронными лучками. Гамма-излучение имеет источником возбужденные ядра атомов, возбуждение может быть природным, а может явиться результатом наведенной радиоактивности.
Шкала электромагнитных волн:
от1011-103 мкм
103-0,74 мкм
0,74--0,4 мкм
0,4мкм- 0,004 мкм
0,01-5 (10 -6 мкм
5(105-10-6 мкм и далее
- электромагнитные волны;
- инфракрасное излучение (ИКИ);
- видимый свет;
- ультрафиолетовое излучение (УФИ);
- рентгеновские лучи;
- гамма-лучи.
Электромагнитные волны иначе называются радиоволнами. Радиоволны делятся на поддиапазоны (см. таблицу).
Название поддиапазона |
Длина волны, м |
Частота колебаний, Гц. |
Сверхдлинные волны |
более 104 |
менее 3•104 |
Длинные волны |
104-103 |
3104-3105 |
Средние волны |
103-102 |
3105-3106 |
Короткие волны |
102-10 |
3106-3107 |
Метровые волны |
10-1 |
3107-3108 |
Дециметровые волны |
1-10-1 |
3108-3109 |
Сантиметровые волны |
10-1-10-2 |
3109-31010 |
Миллиметровые волны |
10-2-10-3 |
31010-31011 |
Субмиллиметровые волны |
10-3-510-5 |
31011-31012 |
Длинные и средние волны огибают поверхность, хороши для ближней и дальней радиосвязи, но обладают малой вместимостью;
короткие волны - отражаются от поверхности и обладают большей вместимостью, используются для дальней радиосвязи;
УКВ - распространяются только в зоне прямой видимости, используются для радиосвязи и в телевидении;
ИКИ - применяются для всякого рода тепловых приборов;
видимый свет - используется во всех оптических приборах;
УФИ - применяется в медицине;
Рентгеновское излучение используется в медицине и в приборах контроля качества изделий;
гамма-лучи - колебания поверхности нуклонов, входящих в состав ядра. используются в парамагнитном резонансе для определения состава и структуры вещества.
26. Сущность параметров давления
и температуры, их влияние на фазовое состояние
вещества. Энергетика фазовых переходов,
использование на практике
Энергия есть мера движений материи, удельная энергия - мера движения материи, заключенной в единице объема. Удельная энергия газа, выраженная в Дж/м3, есть давление этого газа, выраженное в Па (Паскалях), или. что то же самое, в Н/м2, т.е. силе, выраженной в Ньютонах, приходящейся на единицу площади, выраженной в кв. м.:
Физическая сущность давления газа на поверхность заключается в упругой передаче молекулами импульсов движения этой поверхности при изменении своего направления движения в результате соударения с этой поверхностью. Таким образом, давление будет тем больше, чем больше число молекул в единице объема и чем выше их скорость.
Температура - это мера энергии одной молекулы газа:
где
m - масса молекулы, ( - ее скорость, k = 1,38
• 10-23 Дж/град.
Для перехода тел из одного состояния в другое - из твердого в жидкое или из жидкого в газообразное нужно затратить дополнительную энергию - энергию плавления или энергию парообразования соответственно. Для воды эта энергия составляет 6,013 и 40,683 кДж/моль. При обратных фазовых переходах (конденсации или кристаллизации) происходит выделение тепла. Благодаря этому явлению не происходит полного замерзания рек и озер. Дождь идет теплым, что важно для растений. Практическое применение теплоты плавления или парообразования заключается в первую очередь в учете ее при расчете затрачиваемого на плавление или парообразования тепла. Данное физическое явление может быть в ряде случаев полезно использовано, например, для поддержания постоянства температуры в некотором объеме. В этом случае плавящееся или испаряющееся теле нужно специально подбирать или менять его давление.
Следует учитывать, что температура фазовых переходов зависит от давления (фазовая диаграмма с тройной точкой). Это используют на практике, например, применение скороварок убыстряет процесс приготовления пищи, т. к. температура кипения воды повышается. В горах, где давление воздуха ниже, мясо варится более продолжительное время.