
- •1 Часть
- •2. Кризисы и революции в естествознании. Физические революции как основные вехи развития естествознания. Современное естествознание и необходимость очередной физической революции.
- •Билет 3. Научная методология: физическое моделирование и математическое описание. Ограниченность моделей и представление об абсолютной и относительной истине.
- •Билет 4. Явление самоорганизации в природе. Основные понятия синергетики: флуктуация, бифуркации, аттракторы, фракталы.
- •Билет 5. Концептуальные представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, микромир и макромир.
- •Билет 6. Постулаты теории относительности Эйнштейна.
- •7. Механика как основа физики. Основные законы и понятия механики.
- •8. Законы сохранения количества движения (импульса), энергии и момента количества движения.
- •Билет 9. Концептуальные представления о различиях в строении твердых, жидких и газообразных тел.
- •Билет 10. Концепция атомизма от демокрита до наших дней. Планетарная модель атома резерфорда. Корпускулярно-волновой дуализм и волны де Бройля.
- •Билет 11. Основные представления современной химии – атом, его ядро, молекула, элемент, вещество, ион, катион, анион, аллотропия. Эволюционная химия.
- •12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И. Менделеева.
- •Билет 13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.
- •14. Галактики и их классификация. Наша Галактика.
- •15. Современные представления об эволюции звезд и звездных систем.
- •16. Солнечная система. Законы небесной механики – законы Кеплера. (Парадоксы Солнечной системы.)
- •17. Гравитационное взаимодействие тел. Закон Всемирного притяжения Ньютона. (гравитационный парадокс. Разрешение парадокса в эфиродинамике.)
- •19. Первое и Второе начало термодинамики космологический парадокс «Тепловой смерти» Клаузиуса.
- •20. Современные представления о происхождении и строении Земли. Геосферы Земли – ядро, мантия, кора, атмосфера.
- •21. Электрический заряд и электрическое поле, законы электростатики. Напряженность, электрическая индукция, взаимодействие зарядов, закон Кулона. Энергия электрического поля.
- •22. Электрический ток и магнитное поле. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •Билет 23. Геометрическая оптика и волновая теория света. Явление интерференции и дифракции.
- •Билет 24. Закон Хаббла. Красное смещение спектров и объяснение эффектов.
- •Билет 25. Гипотезы происхождения жизни на Земле. Теории эволюции жизни.
- •Билет 26. Основные теории антропогенеза.
- •Билет 27. Наследственность и изменчивость. Синтетическая теория эволюции.
- •Билет 28. Экология. Сущность экологического кризиса и меры по его предотвращению.
- •Билет 29. Биосфера Земли. Взаимодействие организмов со средой обитания.
- •30. Основные научные достижения в биологии и генетике. Роль днк и рнк в системе управления генетической информацией.
- •Билет 31. Генная инженерия и клонирование.
- •32. Сознание и интеллект. Человек и эмоции.
- •33. Понятие о ноосфере и ноосферности мышления. Работы в.И. Вернадского. Роль разума в дальнейшей эволюции Земли и ее биосферы.
- •34. Роль космических факторов в регуляции жизни и сознания. Исследования Чижевского. Биоциклы человека.
- •Билет 35. Основные экологические проблемы на современном этапе.
- •Билет 18. Космологический фотометрический парадокс Шезо-Ольберса. Парадокс как результат неучета всех физических факторов.
- •2 Часть
- •1.Формы движения материи. Кинетическая и потенциальная энергии, их природа и взаимопревращения.
- •2.Концепции симметрии и асимметрии. Природные проявления симметрии.
- •3.Понятие о взаимосвязи и размерности физических величин.
- •4.Системы измерений как язык анализа качества и количества. Система си в единицах физических величин.
- •5.Сущность процесса измерения. Погрешности измерений, их виды, причины.
- •6. Средства измерений в познании мира. Основные метрологические характеристики средств измерений; методы измерений, (методические и инструментальные погрешности-№5 смотри)
- •7. Случайность как непознанная закономерность. Случайные и систематические погрешности, их учет и устранение
- •10. Классы точности измерительных приборов. Абсолютная и относительная погрешности
- •14. Изменение полей при движении объектов. Эффект Доплера и его применение в технике
- •15. Квантовые генераторы: физическая сущность, виды и особенности лазеров, области применения. Квантовые явления в физических средах.
- •16. Квантовые эффекты в микромире. Понятие о спектрах излучения и поглощения, спектрометрия
- •17. Проблема отражения и запоминания информации. Понятие о голографии, области применения
- •18. Физические основы акустики. Эволюция средств звукозаписи и воспроизведения звука
- •19. Основные законы цепей постоянного тока. Техническое использование постоянного тока
- •20. Основные закономерности цепей переменного тока. ( тут фигня к-то! См другое)
- •22. . Закон Фарадея и принцип действия электрических трансформаторов.
- •23. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов
- •24. Электромагнитное излучение и его природа. Шкала электромагнитных волн, области применения
- •27. Существующие и альтернативные источники энергии. Энергетические преобразователи, их виды и применение
- •28. Ядерная энергия и проблемы ее использования.
- •29.Поведение веществ в электрических полях. Диэлектрики и пьезоэлектрики и их применение
- •Поведение веществ в магнитных полях. Ферромагнетики и ферриты, их применение
- •31. Органические вещества и соединения естественного и искусственного происхождения. Полимерные материалы. Термопласты и реактопласты и их применение.
- •32.Дефект массы и энергии связи в ядрах атомов.
- •33.Радиоактивность и закон радиоактивного распада.
- •34. Основные положения молекулярно- кинетической энергии.
- •35. Проблемы техносферы и понятие о ноосфере.
14. Изменение полей при движении объектов. Эффект Доплера и его применение в технике
При движении объекта в каком-либо силовом поле - электрическом, магнитном или электромагнитном восприятие им действий этого поля изменяется. Это связано с тем, что взаимодействие объекта и поля зависит от относительной скорости движения материи поля и объекта, а поэтому не остается постоянной величиной. Наиболее ярко это проявляется в так называемом доплеровском эффекте.
Эффект Доплера - изменение частоты колебаний и длины волны, воспринимаемых приемником колебаний вследствие движения источника волн и наблюдателя относительно друг друга. Основная причина эффекта - изменение числа волн, укладывающихся на пути распространения между источником И приемником.
Доплеровский эффект для звуковых волн наблюдается непосредственно. Он проявляется в повышении тона (частоты) звука, когда источник звука и наблюдатель сближаются и соответственно в понижения тона звука, когда они удаляются.
Доплеровский эффект нашел применение для определения скорости движения объектов - при определении скорости движущейся автомашины, при измерении скорости самолетов, при измерении скоростей сближения или удаления самолетов друг от друга.
В первом случае регулировщик направляет луч переносного радиолокатора навстречу автомашине, и по разности частот посланного и отраженного луча определяет ее скорость.
Во втором случае сам Доплеровский измеритель составляющих скорости устанавливается непосредственно на самолете. Излучаются наклонно вниз три или четыре луча - влево вперед, вправо вперед, влево назад и вправо назад. принимаемые частоты сигналов сравниваются с частотами излучаемых сигналов, разности частот дают представление о составляющей движения самолета по направлению луча, а далее пересчетом полученной информации с учетом положения лучей относительно самолета высчитываются скорость и угол сноса самолета.
В третьем случае в радиолокаторе, установленном на самолете, определяются не только дальность до другого самолета, как в обычных радиолокаторах, но еще и Доплеровский сдвиг частот, что позволяет не только знать расстояние до другого самолета (цели), но и его скорость. На фоне такой способ позволяет отличить движущуюся цель от неподвижной.
Применение эффекта Доплера совместно со спектрометрами в астрономии позволяет получать большой объем информации о поведении далеких от нас звездных объектов и образований.
15. Квантовые генераторы: физическая сущность, виды и особенности лазеров, области применения. Квантовые явления в физических средах.
В различных средах, особенно в так называемых "активных" средах имеются квантовые эффекты, которые с успехом могут быть использованы в прикладном плане. Так например в результате накачки атомов активной среды внешней электрической или световой энергией электроны в среде переводятся на более высокий уровень, чем они находятся в обычном состоянии, а затем уже самопроизвольно перебрасываются на нижний уровень, испуская электромагнитную волну строго определенной частоты. При этом испускание фотонов света частью атомов стимулирует механизм испускания фотонов другими атомами, получается лавинный процесс, в котором все испускаемые фотоны синфазируются друг с другом. На это основан принцип действия квантовых генераторов.
Квантовый генератор - это генератор электромагнитных волн, в котором использовано явление вынужденного излучения. Квантовый генератор радио-диапазона сверхвысоких частот (СВЧ) так же как и квантовый усилитель этого диапазона часто называют мазером. Первый квантовый генератор был создан в диапазоне СВЧ в 1955 г. одновременно в СССР (Н. Г. Басов и А. М. Прохоров) и в США (Ч. Таунс). В качестве активной среды а нем использовался пучок молекул аммиака. Поэтому он получил название молекулярного генератора. В дальнейшем был построен квантовый генератор на пучке атомов водорода, стабильность частоты в нем составляла 10-13, в силу чего такие генераторы используются как стандарты частоты для целей высокоточного измерения времени.
Квантовые генераторы оптического диапазона - лазеры появились в 1960 г. Лазеры работают в широком диапазоне длин волн от ультрафиолетовой до субмиллиметровой областей спектра, в импульсном и непрерывном режимах. Существуют лазеры на кристаллах и стеклах, газовые, жидкостные и полупроводниковые. В отличие от других источников света лазеры излучают высококогерентные монохроматические световые волны, вся энергия которых концентрируется в очень узком телесном угле.
Первый лазер был создан в США с использованием монокристалла рубина. Источником накачки была лампа-вспышка. Эти лазеры в дальнейшем оказались рекордсменами в части энергии импульса. При средней энергии излучения в 3 Дж вследствие очень короткого импульса в 1-10 нс, получается мощность одного импульса, исчисляемая миллиардами Вт.
Затем были созданы газовые лазеры, работающие на смели гелия и неона, а затем полупроводниковые. В газовых лазерах накачка происходит за счет газового разряда в рабочем теле. Особенно перспективен для юстировочных и нивелировочных работ газодинамический лазер на СО2.
В полупроводниковых лазерах накачка происходит за счет инжекции (проникновения) носителей тока через электронно-дырочный переход. Полупроводниковые лазеры отличает высокий кпд и относительная большая мощность непрерывного излучения.
Применение лазеров очень широкое - считывание информации с оптических носителей, измерение дальности (впервые с помощью установленного на Луне уголкового отражателя было измерено расстояние до Луны с точностью 1,5 м), обработка материалов и др. Лазеры нашли применение в микробиологии, медицине, фотохимии, катализе, топографии и пр.