
- •1 Часть
- •2. Кризисы и революции в естествознании. Физические революции как основные вехи развития естествознания. Современное естествознание и необходимость очередной физической революции.
- •Билет 3. Научная методология: физическое моделирование и математическое описание. Ограниченность моделей и представление об абсолютной и относительной истине.
- •Билет 4. Явление самоорганизации в природе. Основные понятия синергетики: флуктуация, бифуркации, аттракторы, фракталы.
- •Билет 5. Концептуальные представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, микромир и макромир.
- •Билет 6. Постулаты теории относительности Эйнштейна.
- •7. Механика как основа физики. Основные законы и понятия механики.
- •8. Законы сохранения количества движения (импульса), энергии и момента количества движения.
- •Билет 9. Концептуальные представления о различиях в строении твердых, жидких и газообразных тел.
- •Билет 10. Концепция атомизма от демокрита до наших дней. Планетарная модель атома резерфорда. Корпускулярно-волновой дуализм и волны де Бройля.
- •Билет 11. Основные представления современной химии – атом, его ядро, молекула, элемент, вещество, ион, катион, анион, аллотропия. Эволюционная химия.
- •12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И. Менделеева.
- •Билет 13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.
- •14. Галактики и их классификация. Наша Галактика.
- •15. Современные представления об эволюции звезд и звездных систем.
- •16. Солнечная система. Законы небесной механики – законы Кеплера. (Парадоксы Солнечной системы.)
- •17. Гравитационное взаимодействие тел. Закон Всемирного притяжения Ньютона. (гравитационный парадокс. Разрешение парадокса в эфиродинамике.)
- •19. Первое и Второе начало термодинамики космологический парадокс «Тепловой смерти» Клаузиуса.
- •20. Современные представления о происхождении и строении Земли. Геосферы Земли – ядро, мантия, кора, атмосфера.
- •21. Электрический заряд и электрическое поле, законы электростатики. Напряженность, электрическая индукция, взаимодействие зарядов, закон Кулона. Энергия электрического поля.
- •22. Электрический ток и магнитное поле. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •Билет 23. Геометрическая оптика и волновая теория света. Явление интерференции и дифракции.
- •Билет 24. Закон Хаббла. Красное смещение спектров и объяснение эффектов.
- •Билет 25. Гипотезы происхождения жизни на Земле. Теории эволюции жизни.
- •Билет 26. Основные теории антропогенеза.
- •Билет 27. Наследственность и изменчивость. Синтетическая теория эволюции.
- •Билет 28. Экология. Сущность экологического кризиса и меры по его предотвращению.
- •Билет 29. Биосфера Земли. Взаимодействие организмов со средой обитания.
- •30. Основные научные достижения в биологии и генетике. Роль днк и рнк в системе управления генетической информацией.
- •Билет 31. Генная инженерия и клонирование.
- •32. Сознание и интеллект. Человек и эмоции.
- •33. Понятие о ноосфере и ноосферности мышления. Работы в.И. Вернадского. Роль разума в дальнейшей эволюции Земли и ее биосферы.
- •34. Роль космических факторов в регуляции жизни и сознания. Исследования Чижевского. Биоциклы человека.
- •Билет 35. Основные экологические проблемы на современном этапе.
- •Билет 18. Космологический фотометрический парадокс Шезо-Ольберса. Парадокс как результат неучета всех физических факторов.
- •2 Часть
- •1.Формы движения материи. Кинетическая и потенциальная энергии, их природа и взаимопревращения.
- •2.Концепции симметрии и асимметрии. Природные проявления симметрии.
- •3.Понятие о взаимосвязи и размерности физических величин.
- •4.Системы измерений как язык анализа качества и количества. Система си в единицах физических величин.
- •5.Сущность процесса измерения. Погрешности измерений, их виды, причины.
- •6. Средства измерений в познании мира. Основные метрологические характеристики средств измерений; методы измерений, (методические и инструментальные погрешности-№5 смотри)
- •7. Случайность как непознанная закономерность. Случайные и систематические погрешности, их учет и устранение
- •10. Классы точности измерительных приборов. Абсолютная и относительная погрешности
- •14. Изменение полей при движении объектов. Эффект Доплера и его применение в технике
- •15. Квантовые генераторы: физическая сущность, виды и особенности лазеров, области применения. Квантовые явления в физических средах.
- •16. Квантовые эффекты в микромире. Понятие о спектрах излучения и поглощения, спектрометрия
- •17. Проблема отражения и запоминания информации. Понятие о голографии, области применения
- •18. Физические основы акустики. Эволюция средств звукозаписи и воспроизведения звука
- •19. Основные законы цепей постоянного тока. Техническое использование постоянного тока
- •20. Основные закономерности цепей переменного тока. ( тут фигня к-то! См другое)
- •22. . Закон Фарадея и принцип действия электрических трансформаторов.
- •23. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов
- •24. Электромагнитное излучение и его природа. Шкала электромагнитных волн, области применения
- •27. Существующие и альтернативные источники энергии. Энергетические преобразователи, их виды и применение
- •28. Ядерная энергия и проблемы ее использования.
- •29.Поведение веществ в электрических полях. Диэлектрики и пьезоэлектрики и их применение
- •Поведение веществ в магнитных полях. Ферромагнетики и ферриты, их применение
- •31. Органические вещества и соединения естественного и искусственного происхождения. Полимерные материалы. Термопласты и реактопласты и их применение.
- •32.Дефект массы и энергии связи в ядрах атомов.
- •33.Радиоактивность и закон радиоактивного распада.
- •34. Основные положения молекулярно- кинетической энергии.
- •35. Проблемы техносферы и понятие о ноосфере.
Билет 18. Космологический фотометрический парадокс Шезо-Ольберса. Парадокс как результат неучета всех физических факторов.
Фотометри́ческий парадо́кс (парадокс Ольберса) — один из парадоксов дорелятивистской космологии, заключающийся в том, что в стационарной Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. В бесконечной Вселенной, все пространство которой заполнено звёздами, всякий луч зрения должен оканчиваться на звезде, аналогично тому, как в густом лесу мы обнаруживаем себя окружёнными «стеной» из удалённых деревьев. Поток энергии излучения, принимаемого от звезды, уменьшается обратно пропорционально квадрату расстояния до неё. Но угловая площадь (телесный угол), занимаемая на небе каждой звездой, также уменьшается обратно пропорционально квадрату расстояния, из чего следует, что поверхностная яркость звезды (равная отношению потока энергии к телесному углу, занимаемому на небе звездой) не зависит от расстояния. Поскольку наше Солнце является во всех отношениях типичной звездой, то поверхностная яркость звезды в среднем должна быть равна поверхностной яркости Солнца. Когда мы смотрим в какую-то точку неба, мы видим звезду с той же поверхностной яркостью, что и Солнце; поверхностная яркость соседней точки должна быть такой же, и вообще во всех точках неба поверхностная яркость должна быть равна поверхностной яркости Солнца, поскольку в любой точке небосвода должна находиться какая-нибудь звезда. Следовательно, всё небо (не только ночью, но и днём) должно быть таким же ярким, как и поверхность Солнца.
Оно основано на конечности возраста Вселенной. Поскольку (по современным данным) более 13 млрд. лет назад во Вселенной не было галактик и квазаров, самые далёкие звезды, которые мы можем наблюдать, расположены на расстояниях около 13 млрд. св. лет. Это устраняет основную предпосылку фотометрического парадокса — то, что звезды расположены на любых, сколь угодно больших расстояниях от нас. Вселенная, наблюдаемая на больших расстояниях, настолько молода, что звезды ещё не успели в ней образоваться. Заметим, что это нисколько не противоречит космологическому принципу, из которого следует безграничность Вселенной: ограничена не Вселенная, а только та часть её, где успели за время прихода к нам света родиться первые звёзды.
2 Часть
1.Формы движения материи. Кинетическая и потенциальная энергии, их природа и взаимопревращения.
Мой вариант:
Материей ( лат. - вещество, субстанция, субстрат) принято называть всё то, что существует в природе. Формы движения материи - основные типы движения и взаимодействия материальных объектов, выражающие их целостные изменения. Каждому телу присуще не одна, а ряд форм движения материи. Выделяются 3 осн. группы форм д. м.: 1) в неорганической природе 2) в живой природе 3) в обществе.
Неорганическая природа: а)пространственное перемещение б)движение элементарных частиц и полей - электромагнитные, гравитационные, сильные и слабые взаимодействия, процессы превращения элементарных частиц и др. в)движение и превращение атомов и молекул, включающее в себя химическую формы движения материи г)изменения в структуре макроскопических тел - тепловые процессы, изменение агрегатных состояний, звуковые колебания и др.; д)изменение космических систем различных размеров: планет, звезд, галактик и их скоплений.
Ф.д.м. в Живой природе - совокупность жизненных процессов в организмах: обмен веществ, процессы отражения, саморегуляции, управления и воспроизводства, различные отношения в биоценозах и других экологических системах, взаимодействие всей биосферы с природными системами Земли и обществом. Внутриорганизменные биологические ф.д.м. направлены на обеспечение сохранения организмов, поддержание стабильности внутренней среды в меняющихся условиях существования. Надорганизменные ф.д.м. выражают отношения между представителями различных видов в экосистемах и определяют их численность, зону распространения (ареал) и эволюцию.
Общественные ф.д.м. -проявления сознательной деятельности людей, все высшие формы отражения и целенаправленного преобразования действительности.
Кинетической энергией называют энергию, которой тело обладает вследствие своего движения. Е= m*V2/2. обладают все движущиеся тела(текущая вода, ветер, вращающееся колесо). Физический смысл : эта энергия равна работе, которую надо совершить.
Потенциальной энергией называют энергию, которая определяет взаимным расположением тел или частей одного тела. (энергия взаимодействия тел: поднятый камень на какую-нибудь высоту над Землей, сжатая или растянутая пружина). Взаимодействующие тела могут обладать одновременно и кинетической и потенциальной энергией, т.е. полной энергией(Летящий мяч движется вперед и взаимодействует с Землей). При движении тела в поле тяжести наблюдается только переход К. энергии в П. (допустим, движение пружины прекратилось, вся К. энергия затрачена на сжатие пружины. Переход в запас П. энергии, кот обладает пружина в сжатом состоянии), а при упругом соударении тел наблюдается и переход энергии К в П. упругих деформаций, а также обратный переход.
Изменение потенциальной энергии определяется конкретной природой взаимодействия системы тел (гравитационным, электромагнитным, сильным, слабым). Так, потенциальная энергия сжатой пружины выражает собой энергию внутреннего движения частиц, составляющих пружину.
Природа потенциальной энергии может быть совершенно различной. В случае с математическим маятником она связана с притяжением груза маятника Землей. Именно это гравитационное взаимодействие уменьшает скорость груза при его движении вверх. В случае с теннисным мячом, ударяющимся о стенку, потенциальная энергия связана с деформацией мяча.
Ацюковский:
На разных уровнях организации материи ее движения проявляются по-разному. Хаотические движения молекул газа или колебания молекул в твердом теле воспринимаются как теплота. Электрические и магнитные поля являются вихревыми движениями эфира. Но так или иначе все это есть движения материи в пространстве и во времени, т. е. движения механические.
Важнейшей мерой движения является энергия как мера движения материи, в конечном итоге переходящей в теплоту при преобразовании механического движения макротела в тепловую энергию его молекул.
Необходимо различать кинетическую и потенциальную энергию. Первая есть мера заключенного в теле количества движения, которое может быть уничтожена путем преобразования ее в тепловую энергию, это есть мера механического поступательного или вращательного движения любого тела.
Вторая мера есть мера запасенной в телах или окружающей среде энергии, которая при определенных условиях может превратиться в кинетическую энергию, такой потенциальной энергией является, например, энергия, запасенная а сжатой пружине, в гравитационном поле или в заряженном конденсаторе.
Кинетическая энергия является мерой его механического движения и измеряется той работой, которую может совершать это тело при его торможении до полной остановки. Кинетическая энергия материальной точки равна половине произведения массы т точки на квадрат скорости .
Потенциальная энергия является мерой той работы, которую совершают потенциальные силы (внешние и внутренние) при переходе материальной точки или системы из текущего состояния в "нулевое состояние". "Нулевое состояние" системы определяется условиями решаемой задачи. В любом опыте можно измерить только изменение потенциальной энергии, но не ее абсолютное значение.
Потенциальная энергия - работа, которую произведут действующие на систему силы при перемещении системы в точку, где потенциальная энергия условно принята равной нулю.
При любом перемещении масс в системе сумма потенциальной и кинетической энергий остается неизменной.
Поскольку в реальных системах потенциальная энергия Р не только преобразуется в кинетическую, но и затрачивается на потери П в системе, то: P=Wx+П, откуда П = Р - Wк, = min - функция Лагранжа, условие движения с минимальными потерями. Существует всеобщая взаимосвязь массы и энергии, выражаемая формулой:E=mc2, где с - скорость света в пустоте. Эта формула устанавливает "эквивалентность" массы и энергии.На самом деле масса и энергия - разные категории: масса - мера количества вещества, а энергия - мера движения. Коэффициент пропорциональности - скорость света не может использоваться во всех случаях и, по-видимому, может быть применен только для оценки массы фотона, да и то с оговорками.