
- •27.Термоэлектронная эмиссия и ее применение.
- •28.Термоэлектрические явления и их применение.
- •29.Магнитное поле проводников с током. Индукция магнитного поля. Графическое изображение магнитных полей.
- •30. Действие магнитного поля на проводник с током. Закон Ампера. Единицы измерения магнитной индукции.
- •31.Магнитный поток. Работа перемещения проводника с током в магнитном поле.
- •32. Действие магнитного поля на контур с током. Магнитный момент контура с током.
- •33.Закон Био-Савара-Лапласса. Напряженность магнитного поля. Магнитная постоянная.
- •34. Применение закона Био-Савара-Лапласса для расчета магнитных полей.
- •35.Циркуляция вектора магнитной индукции. Закон полного тока и его
- •36.Явление электромагнитной индукции. Закон Фарадея и правило Ленца
- •§ 122. Явление электромагнитной индукции (опыты Фарадея)
- •§ 123. Закон Фарадея и его вывод из закона сохранения энергии
- •37. Магнитное поле движущейся заряженной частицы.
- •38. Движение заряженных частиц в магнитном поле. Сила Лоренца.
- •§114. Действие магнитного поля на движущийся заряд
- •§ 115. Движение заряженных частиц в магнитном поле
- •39. Электрический ток в витке, движущемся в однородном магнитном
- •40. Явления самоиндукции. Индуктивность.
- •41.Влияние индуктивности на величину тока в цепи.
- •42.Явление взаимной индукции. Взаимная индуктивность.
- •43.Энергия м плотность энергии магнитного поля.
- •44.Электромагнитные колебаний в колебательном контуре. Период колебаний.
- •45. Незатухающие и затухающие колебания в колебательном контуре.
- •46. Ток смещения. Плотность тока смещеня.
- •47.Электромагнитное поле. Уравнение Максвелла в интегральной форме.
- •48.Электромагнитные волны. Их энергия и скорость распространения. Виды электромагнитных волн.
43.Энергия м плотность энергии магнитного поля.
Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.
Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) Ф=LI, причем при изменении тока на dI магнитный поток изменяется на dФ=LdI. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dA=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф будет равна
Следовательно, энергия магнитного поля, связанного с контуром,
W=LI2/2. (130.1)
Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля.
Энергию магнитного поля можно пред-
202
ставить как функцию величин, характеризующих это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим
Так как I=Вl/(0N) (см. (119.2)) и В=0H (см. (109.3)), то
где Sl=V — объем соленоида.
Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью энергии
Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т. е. оно относится только к пара- и диамагнетикам (см. § 132).
44.Электромагнитные колебаний в колебательном контуре. Период колебаний.
Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддерживания электромагнитных колебаний используется колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.
Рассмотрим последовательные стадии колебательного процесса в идеализированном контуре, сопротивление которого пренебрежимо мало (R0). Для возбуждения в контуре колебаний конденсатор предварительно заряжают, сообщая его обкладкам заряды ±Q. Тогда в начальный момент времени t=0 (рис. 202, а) между обкладками конденсатора возникнет электрическое поле, энергия которого
(1/2C)Q2(см. (95.4)). Если замкнуть конденсатор на катушку индуктивности, он начнет разряжаться, и в контуре потечет возрастающий со временем ток I. В результате энергия электрического поля будет уменьшаться, а энергия магнитного поля катушки (она равна 1/2LQ2 ) —возрастать. Так как R0, то, согласно закону сохранения энергии, полная энергия
так как она на нагревание не расходуется. Поэтому в момент t=1/4 Т, когда конденсатор полностью разрядится, энергия электрического поля обращается в нуль, а энергия магнитного поля (а следовательно, и ток) достигает наибольшего значения(рис. 202, б). Начиная с этого момента ток в контуре будет убывать; следовательно, начнет ослабевать магнитное поле катушки, и в ней индуцируется ток, который течет (согласно правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся ослабить ток, который в конце концов обратится в нуль, а заряд на обкладках конденсатора достигнет максимума (рис. 202, в). Далее те же процессы начнут протекать в обратном направлении (рис. 202, г) и система к моменту времени t=T придет в первоначальное состояние (рис. 202, а). После этого начнется повторение рассмотренного цикла разрядки и зарядки конденсатора. Если бы потерь энергии не было, то в контуре совершались бы периодические незатухающие колебания, т. е. периодически изменялись (колебались) бы заряд Q на обкладках конденсатора, напряжение U на конденсаторе и сила тока I, текущего через катушку индуктивности. Следовательно, в контуре возникают электрические колебания, при чем колебания сопровождаются превращениями энергий электрического и магнитного полей.
Электрические колебания в колебательном контуре можно сопоставить с механическими колебаниями маятника (рис.202 внизу), сопровождающимися взаимными превращениями потенциальной и кинетической энергий маятника. В данном случае энергия электрического поля конденсатора (Q2/(2C)) аналогична потенциальной энергии упругой деформации (kx2/2), энергия магнитного поля катушки (LQ2/2) — кинетической энергии (mx2/2), сила тока в контуре — скорости движения маятника. Индуктивность L играет роль массы т, а сопротивление контура — роль силы трения, действующей на маятник.
Согласно закону Ома, для контура, содержащего катушку индуктивностью L, конденсатор емкостью С и резистор сопротивлением R, ir+uc=ξs,где IR — напряжение на резисторе, UC=Q/C— напряжение на конденсаторе, ξs=-LdI/dt — э.д.с. самоиндукции, возникающая в катушке при протекании в ней переменного тока (ξs, —единственная э.д.с. в контуре).. Следовательно,
Разделив (143.1) на L и подставив I=Q и dI/dt=Q, получим дифференциальное уравнение колебаний заряда Q в контуре:
В данном колебательном контуре внешние э.д.с. отсутствуют, поэтому рассматриваемые колебания представляют собой свободные колебания (см. §140). Если сопротивление R=0, то свободные электромагнитные колебания в контуре являются гармоническими. Тогда из (143.2) получим дифференциальное уравнение свободных гармонических колебаний заряда в контуре:
Из выражений (142.1) и (140.1) вытекает, что заряд Q совершает гармонические колебания по закону
Q = Qmcos(0t+), (143.3) где Qm — амплитуда колебаний заряда конденсатора с циклической частотой 0, называемой собственной частотой контура, т. е. 0=1/LC, (143.4)
и периодом T=2LC. (143.5)
Формула (143.5) впервые была получена У. Томсоном и называется формулой Томсона.
Сила тока в колебательном контуре (см. (140.4))
где Im=0Qm — амплитуда силы ток Напряжение на конденсаторе
где Um=Qm/C—амплитуда напряжения.
Из выражений (143.3) и (143.6) вытекает, что колебания тока I опережают по фазе колебания заряда Q на /2, т. е., когда ток достигает максимального значения, заряд (а также и напряжение (см. (143.7)) обращается в нуль, и наоборот.