
- •Приложение Булевой алгебры к синтезу комбинационных схем
- •Основные законы (тождества)
- •Разнообразие Булевых функций.
- •Некоторые функции от трех переменных.
- •Нормальные формы Булевых функций
- •Разнообразие двоичных алгебр
- •Числовое представление Булевых функций
- •Преобразование произвольной аналитической формы Булевой функции в нормальную
- •Приведение произвольных нормальных форм Булевой функции к каноническим
- •Минимизация булевых функций на картах Карно(см. Практику).
- •Кубическое представление булевых функций.
- •Определения.
- •Геометрическая интерпретация кубов малой размерности. Графическое представление булевых функций.
- •Покрытия булевых функций.
- •Цена покрытия.
- •Нулевое покрытие булевой функции и получение минимальной кнф.
- •Импликанты булевой функции. Системы импликант.
- •Аналогия между импликантами и кубическим представлением Булевой функции
- •Функциональная полнота системы булевых функций.
- •Синтез комбинационных схем. Понятие логического элемента. Типовые логические элементы и их обозначения на функциональных схемах.
- •Понятие двоичного сигнала. Способы его кодирования.
- •Понятие логической системы. Типы логических систем.
- •Задачи анализа и синтеза комбинационных схем.
- •Построение комбинационных схем (кс) по минимальным нормальным формам в различных базисах.
- •Задача факторизации (факторного преобразования) булевой функции.
- •Оценка эффекта факторизации.
- •Построение одновыходных схем. Декомпозиция булевых функций.
- •Синтез многовыходных комбинационных схем.
- •Минимизация системы Булевых функций
- •Совместная минимизация
- •Факторизация системы Булевых функций
- •Декомпозиция системы Булевых функций
- •Арифметические основы эвм.
- •Двоичные числа с фиксированной запятой.
- •Диапазон предоставления чисел
- •Диапазон представления дробных чисел.
- •1 £Aдрнепр£2-2-(n-1) Числа с плавающей запятой.
- •Диапазон представления чисел с плавающей запятой.
- •Точность представления чисел
- •Погрешность двоичной дроби
- •Точность представления для коротких форматов в эвм различных типов
- •Методы округления чисел с плавающей запятой
- •Принципы выполнения арифметических операций в эвм. Основы двоичной арифметики. Операция сложения целых чисел.
- •Операция вычитания целых чисел.
- •Переполнение при вычитании и способы его фиксации.
- •Сложение и вычитание чисел с плавающей запятой.
- •Вычитание
- •Операция умножения целых чисел и принципы ее реализации в эвм Основные положения двоичного умножения
- •Особенности реализации умножения в эвм
- •Способы (схемы) реализации умножения
- •Упрощенная схема операционного устройства для реализации умножения по второму способу
- •Операция деления и ее реализация в эвм Особенности двоичного деления
- •Особенности реализации деления в эвм. (по отношению к целым числам)
- •Деление знаковых.
- •Деление в дополнительных кодах.
Разнообразие двоичных алгебр
В связи с тем, что любую сколь угодно сложную Булеву функцию можно представить в канонических формах, то есть записать ее с помощью операций отрицания, конъюнкции и дизъюнкции эта система Булевых операций обладает свойством функциональной полноты, т.е. образует так называемый базис. Естественно предположить, что система Булевых операций является не единственной, с помощью которой можно образовать некоторый базис.
В принципе любую из базовых функций можно отождествить соответствующей операцией и на основе совокупности этих операций построить двоичные алгебры, отличные от Булевой. К наиболее распространенным двоичным алгебрам относятся: алгебра Жигалкина (Å, &); алгебра Вебба (Пирса) (¯); алгебра Шеффера ( | ). В каждой из этих алгебр действуют собственные законы. Естественно существуют взаимно однозначные переходы от операций одного базиса к операциям другого.
Числовое представление Булевых функций
Для любой Булевой функции можно предложить две числовые формы, основанные на перечислении десятичных эквивалентов наборов аргументов на которых функция принимает значение единицы (нуля).
f3(x)=(0,2,6,7)
- от этой числовой формы легко перейти
к КДНФ путем замены каждого из наборов
в перечислении конституенты единицы.
y=`x1`x2`x3Ú`x1x2x3Úx1x2`x3Úx1x2x3=`x1`x3(`x2Úx2)Úx1x2(`x3Úx3)= `x1`x3Úx1x2 (ДНФ)
f3(x)=&(1,3,4,5)
y=(x1Úx2Ú`x3) (x1Ú`x2Ú`x3) (`x1Úx2Úx3) (`x1Úx2Ú`x3) (*)
Преобразование произвольной аналитической формы Булевой функции в нормальную
В Булевой алгебре в виде теоремы доказывается следующее утверждение: существует единый конструктивный подход, позволяющий преобразовать аналитическое выражение Булевой алгебры в произвольной форме к нормальной форме.
Пример:
y=f4(x)=(x1x2Úx2`x3)(x1|`x4)=(x1x2Úx2`x3)( `x1x4)=(x1x2Úx2`x3)(x1Ú`x4)=
=x1x2Úx1x2`x4Úx1`x2x3Ú`x2x3`x4=x1x2Úx1`x2x3Ú`x2x3`x4=x1(x2Ú`x2x3)Ú `x2x3`x4=
=x1(x2Úx3) Ú`x2x3`x4=x1x2Úx1x3Ú`x2x3`x4 (КДНФ)
Замечания:
1) В общем случае любая Булева функция может иметь несколько КДНФ, отличающихся либо количеством термов, либо количеством букв в этих термах.
2) При построении комбинационной схемы, реализующей данную функцию по ее нормальной форме предпочтительней та, которая обладает наименьшим числом термов и наименьшим количеством букв в этих термах.
3) По сравнению со схемой, построенной по ДНФ, схема, построенная по скобочной форме (*), является более предпочтительной т.к. при одном и том же числе логических элементов (И, ИЛИ) содержат меньшее число входов (9 вместо 10).
Задача преобразования нормальной формы Булевой функции в скобочной форме называют задачей фактеризации.
4) Сущность конструктивного подхода при получении ДНФ состоит в следуюшем:
а) преобразование операций не-Булевого базиса к операциям Булевого базиса (см. последние строки таблицы)
б) снятие отрицаний над выражениями с применением законов двойственности
в) раскрытие скобок с применением дистрибутивного закона
г) упрощения выражения с применением закона поглощения