Скачиваний:
147
Добавлен:
09.05.2014
Размер:
7.27 Mб
Скачать

Построение одновыходных схем. Декомпозиция булевых функций.

Задача декомпозиции булевой функции в общем случае состоит в таком разделении множества ее аргументов на ряд подмножеств, при котором можно выразить исходную функцию f(x) через вспомогательную промежуточную функцию j(z), где zÌx.

В частном случае имеет место так называемая простая разделительная декомпозиция, при которой множество аргументов x разделяется на два непересекающихся подмножества (z,w®(zÇw=j;zÈw=x)) и приведение исходной функции к виду f(x)=f(j(z,w)).

Пример : f3(x)=V(1,2,4,7)

(f=1)

z=(x2x3) W={x1}

j(z)= `x2x3vx2`x3

f(x)= `x1j(z)vx1`j(z) SQ=13

SQ=13 T=5t

Схема базиса Жигалкина.

SQ=4 T=2t

Применение декомпозиции там, где он уместно, во многих случаях позволяет уменьшить цену синтезируемой схемы.

МДНФ y=x1`x2x3`x4vx2`x5v`x3`x5vx4`x5=x1`x2x3`x4v`x5(x2v`x3vx4)

SQ=14

j(z)=x2v`x3vx4

___ _

f(x)=x1*y(z)vx5*j(z) SQ=10

Синтез многовыходных комбинационных схем.

МКС представляется в виде обобщенного «черного ящика»

Закон функционирования МКС представляется в виде системы булевых функций

|y1=f1(x1...xn)

|y2=f2

|.

|.

|.

|yn=fn

Естественным образом, при решении задачи синтеза МКС применяются методы факторизации и возможной декомпозиции, применительно не к одной функции, а к системе.

Минимизация системы Булевых функций

Задача минимизации применительно к системе Булевых функций решается аналогично как для одной функции и сводится к получению минимального покрытия. Для решения этой задачи система приводится к одной функции путем дополнения множества агументов подмножеством вспомогательных переменных, с помощью которых выделяются отдельные функции системы. Количество вспомогательных переменных k³log2m, m - количество функций.

Пример:

Раздельная минимизация:

y1 Cmin (y1)=

y2 Cmin (y2)=

МДНФ:

При построении схемы по этому выражению, она разлагается на две независимые подсхемы, отдельные для реализаций каждой функции.

Совместная минимизация

Пусть V=0 для у1; V=1 для y2

Cmin(y1,y2)=;

Z= (общий терм)

Пример:

V1V2=00 y1

V1V2=01 y2

V1V2=10 y3

V1V2=11 y4

Cmin(S)=

Общие термы:

При совместной минимизации Булевых функций система в минимальной форме может оказаться, что некоторые термы поглощаются другими, т.е. после получения минимальной формы необходимо исключить поглощаемые термы.

После получения минимального покрытия при записи минимальных форм с начала выделяются термы, общие для нескольких функций и обозначаются вспомогательными функциями (Z1-Z4).

В целях удобства рядом с каждым общим термом рекоммендуется проставить его принадлежность.

Далее выписываются минимальные формы для отдельных функций с учетом их собственных термов и общих термов, принадлежащих данной функции. При наличии незадействованных комбинаций вспомогательных переменных все наборы аргументов для них являются безразличными.

Пример:

Сmin(S)=

Для большого числа функций и их аргументов применение карт Карно для совместной минимизации выглядит затруднительным. В этом случае можно использовать следующие подходы:

  1. Применение машинных методов

  2. Раздельная минимизация и использование карт Карно.

  3. Выделение подмножеств из функций системы для их совместной минимизации.