- •Геофизические методы контроля за разработкой нефтяных и газовых месторождений
- •Содержание
- •Предисловие
- •1. Основные понятия о нефтегазовых месторождений
- •2. Методические и технические особенности применения гис при контроле
- •3. Цели и задачи контроля
- •4. Исследование процесса вытеснения нефти в пласте
- •5. Изучение эксплуатационных характеристик пласта
- •6. Изучение технического состояния скважин
- •7. Исследование скважин для выбора оптимального режима работы технологического оборудования
- •8. Условия проведения промыслово-геофизических работ при контроле за разработкой нефтяных и газовых месторождений
- •9. Современные представления о расположении углеводородов по высоте залежи
- •10. Вытеснение нефти водой и газом
- •11. Типовые комплексы промыслово-геофизических методов при контроле за разработкой
- •12. Изменения петрофизических характеристик горных пород в процессе эксплуатации (разработки) залежей углеводородов
- •13. Изменение физических свойств. Удельное электрическое сопротивление
- •14. Изменение физических свойств. Диэлектрическая проницаемость
- •15. Изменение физических свойств. Естественная электрохимическая активность
- •16. Изменение физических свойств. Вызванная электрохимическая активность
- •17. Изменение физических свойств. Естественная гамма-активность
- •18. Изменение физических свойств. Нейтронные характеристики
- •19. Изменение физических свойств. Акустические характеристики
- •20. Изменение физических свойств. Термические характеристики
- •21. Методы меченого вещества
- •22. Метод радиоактивных изотопов
- •23. Нейтронный метод меченого вещества
- •24. Механическая дебитометрия
- •25. Термокондуктивная расходометрия
- •26. Особенности интерпретации термокондуктивной расходометрии
- •27. Исследование состава смеси в стволе скважины с помощью резистивиметрии
- •28. Определение состава смеси с помощью гамма ‑ плотностеметрии
- •29. Кислородный нейтронный гамма-метод в комплексе работ по контролю (кангм)
- •30. Влагометрия при контроле за разработкой
- •31. Термометрия при контроле за разработкой
- •1 ‑ Контрольный замер температуры; 2, 3 ‑ замер температуры после закачки соответственно 18 и 36 м3 (а), 8 и 18 м3 (б) воды
- •32. Определение пластового давления
- •33. Определение первоначального положения водонефтяного контакта
- •На кривой семиэлектродного зонда внк соответствует точке, расположенной на расстоянии размера l0 зонда ниже точки среднего значения
- •34. Определение первоначального положения газоводного контакта
- •35. Определение первоначального положения газонефтяного контакта
- •6 ‑ Первоначальные положения гнк и внк, 7 ‑ текущие положения гнк и внк
- •36. Контроль за перемещением внк
- •37. Контроль перемещения гнк и гвк
- •38. Контроль перемещения газовой шапки и перемещения нефтяной оторочки при эксплуатации нефтегазовых месторождений
- •39. Выделение обводненных продуктивных пластов в необсаженных скважинах
- •40. Выделение обводненных продуктивных пластов в обсаженных неперфорированных скважинах
- •1 ‑ Интервал перфорации, 2 ‑ интервал затрубной циркуляции.
- •41. Выделение обводненных продуктивных пластов в обсаженных перфорированных скважинах
- •42. Определение параметров выработки пластов
- •43. Определение коэффициентов текущей и остаточной нефтенасыщенности в необсаженных скважинах
- •44. Определение коэффициентов текущей и остаточной нефтенасыщенности в обсаженных скважинах
- •45. Определение коэффициента текущей и остаточной газонасыщенности газовых месторождений
- •46. Оценка коэффициента текущей и конечной нефтеотдачи по комплексу геофизических параметров
- •47. Оценка коэффициента текущей и конечной газоотдачи пластов по комплексу геофизических параметров
- •48. Особенности разработки, регулирования и контроля за эксплуатацией нефтегазовых залежей
- •49. Выделение интервалов притока пласта
- •II ‑ влагограмма
- •50. Определение продуктивности (приемистости) пласта
- •51. Определение работающей мощности пласта
- •1 ‑ Глина, 2 ‑ песчаник нефтеносный, 3 ‑ интервал перфорации,
- •4 ‑ Работающие мощности
- •52. Изучение технического состояния скважин. Общие положения
- •53. Оценка качества цементирования колонн по термометрии
- •54. Оценка качества цементирования колонн по методу радиоактивных изотопов
- •55. Оценка качества цементирования по гамма-гамма методу
- •56. Оценка качества цементирования по акустике
- •57. Выявление дефектов обсадных и насосно-компрессорных труб
- •58. Выявление негерметичности обсадных колонн
- •I ‑ геотерма; II ‑ замер после снижения уровня жидкости в стволе скважины на 200 м;
- •1 ‑ Глина, 2 ‑ алевролит, 3 ‑ песчаник, 4 ‑ место притока воды
- •I ‑ прямой зонд 50 см, II ‑ обращенный зонд 25 см; 1 ‑ цемент в затрубном пространстве, 2 ‑ приток нефти, 3 ‑ приток воды, 4 ‑ песчаник водоносный,
- •5 ‑ Глина, 6 ‑ алевролит, 7 ‑ песчаник нефтеносный, 8 ‑известняк
- •59. Выявление интервалов затрубной циркуляции флюидов
- •2 ‑ Направление движения флюида, 3 ‑ термограмма, 4 ‑ геотерма,
- •5 ‑ Линия, параллельная оси глубин
- •60. Выявление уровня жидкости, интервалов солевых и парафиновых отложений
- •61. Методы интенсификации притоков нефти
- •62. Интенсификация притока и приемистости пласта с помощью соляно-кислотной обработки
- •63. Интенсификация притока с помощью тепловых методов
- •64. Интенсификация притока с помощью внутрипластового горения
- •65. Контроль гидравлического разрыва пласта
- •66. Контроль за барохимическим воздействием на пласт
- •5 ‑ Интервал перфорации
- •67. Метод акустического и комбинированного воздействия на пласт
- •68. Электрообработка нефтяных скважин мощными импульсными источниками тока с целью повышения нефтеотдачи
- •69. Горизонтальные скважины
- •70. Задачи, решаемые геофизическими методами в горизонтальных скважинах
- •71. Геофизические исследования при строительстве гс и ргс
- •72. Геофизические исследования горизонтальных скважин в процессе бурения
- •73. Геофизические исследования горизонтальных скважин после бурения
- •74. Геофизические исследования горизонтальных скважин в процессе их освоения
- •75. Геофизические исследования горизонтальных скважин в процессе их испытания
- •76. Геофизические исследования горизонтальных скважин в процессе их эксплуатации
- •Методические рекомендации для преподавателя
- •Методические указания для студентов
- •Контрольные вопросы
- •Список литературы
- •Дополнительный
72. Геофизические исследования горизонтальных скважин в процессе бурения
Геофизические исследования ГС в процессе бурения подразделяются на:
инклинометрические (измерение траектории ствола ГС);
геолого-технологические исследования (ГТИ);
геофизические (выполнение комплекса ГИС).
К их проведению предъявляется целый ряд специфических требований, отсутствующих при проведении геофизических исследований в вертикальных и наклонно-направленных скважинах.
Измерения траектории ствола ГС могут проводиться как в процессе бурения скважины с помощью забойных телеизмерительных систем (ЗТС), встраиваемых в буровой инструмент, так и доставляемых на забой при очередной остановке бурения автономными или кабельными инклинометрами.
Бурение горизонтального и наклонно-направленного участка скважины «вслепую» приводит к необходимости эпизодического или постоянного исправления траектории, а порой и к перебуриванию уже пройденных участков ствола. Поэтому проведение измерений в процессе направленного бурения с помощью телесистем, являющихся частью бурового инструмента, является экономически целесообразным мероприятием.
Точность измерений ЗТС должна быть такой, чтобы обеспечить попадание в технологический круг или войти в продуктивный пласт на необходимой глубине и пройти по пласту на проектную протяженность. При этом необходимо исключить попадание ствола в водонасыщенную часть продуктивного пласта, а также исключить выход из продуктивной части пласта, что в противном случае сведет на нет эффект от горизонтальной скважины.
С одной стороны, это может быть обеспечено системами с точностью измерений зенитного угла не хуже ±0,25° (желательно ±0,1°). Требования к измерению азимутального угла могут быть ослаблены при проводке горизонтальных скважин и должны быть не хуже ±0,25° при бурении разветвленно-горизонтальных скважин.
Если мощность (толщина) однородного продуктивного пласта составляет 4-5 м, то проводку горизонтального участка скважины необходимо сопровождать пеленгаторами границ пласта, а также возможно применение ГТИ. Например, к инклинометрическим исследованиям при бурении ГС маломощных пластах предъявляются повышенные требования обеспечения точности проводки скважины, особенно ее горизонтального участка в пределах 0,5-1,0 м.
Как правило, наряду с управлением траекторией и привязкой текущих координат к геологическим реперам ствола бурящейся скважины необходимо контролировать технологические параметры режима бурения не только по данным измерений наземными измерительными приборами (механическая скорость бурения, давление на стояке манифольда, параметры бурового раствора на входе и выходе из скважины и др.), но и по показаниям забойных измерительных устройств.
К геолого-технологическим исследованиям ГС каких-либо особых требований, как правило, не предъявляется, однако весьма желателен непрерывный контроль за движением по продуктивному пласту, для чего могут быть применены системы раннего обнаружения газопроявления с помощью гидроакустических методов.
Геофизические исследования в процессе бурения ГС должны проводится без искажения геофизических полей, т.е. в методическом отношении геофизические измерения в ГС должны быть адекватны аналогичным измерениям в вертикальных и наклонно-направленных скважинах. При этом должны быть учтены особенности конструкций измерительных устройств и технология выполнения исследований.
Еще более усложняются технологии проведения измерений в горизонтальной части ствола работающей скважины, так как при неподвижных насосно-компрессорных трубах (НКТ) нужны нестандартные средства доставки измерительного комплекса в интервал исследования ГС.
Контрольные вопросы
Зачем необходимо изучать горизонтальные скважины во время бурения?
Какие требования предъявляются к технологии проводки горизонтальных скважин?
