- •Геофизические методы контроля за разработкой нефтяных и газовых месторождений
- •Содержание
- •Предисловие
- •1. Основные понятия о нефтегазовых месторождений
- •2. Методические и технические особенности применения гис при контроле
- •3. Цели и задачи контроля
- •4. Исследование процесса вытеснения нефти в пласте
- •5. Изучение эксплуатационных характеристик пласта
- •6. Изучение технического состояния скважин
- •7. Исследование скважин для выбора оптимального режима работы технологического оборудования
- •8. Условия проведения промыслово-геофизических работ при контроле за разработкой нефтяных и газовых месторождений
- •9. Современные представления о расположении углеводородов по высоте залежи
- •10. Вытеснение нефти водой и газом
- •11. Типовые комплексы промыслово-геофизических методов при контроле за разработкой
- •12. Изменения петрофизических характеристик горных пород в процессе эксплуатации (разработки) залежей углеводородов
- •13. Изменение физических свойств. Удельное электрическое сопротивление
- •14. Изменение физических свойств. Диэлектрическая проницаемость
- •15. Изменение физических свойств. Естественная электрохимическая активность
- •16. Изменение физических свойств. Вызванная электрохимическая активность
- •17. Изменение физических свойств. Естественная гамма-активность
- •18. Изменение физических свойств. Нейтронные характеристики
- •19. Изменение физических свойств. Акустические характеристики
- •20. Изменение физических свойств. Термические характеристики
- •21. Методы меченого вещества
- •22. Метод радиоактивных изотопов
- •23. Нейтронный метод меченого вещества
- •24. Механическая дебитометрия
- •25. Термокондуктивная расходометрия
- •26. Особенности интерпретации термокондуктивной расходометрии
- •27. Исследование состава смеси в стволе скважины с помощью резистивиметрии
- •28. Определение состава смеси с помощью гамма ‑ плотностеметрии
- •29. Кислородный нейтронный гамма-метод в комплексе работ по контролю (кангм)
- •30. Влагометрия при контроле за разработкой
- •31. Термометрия при контроле за разработкой
- •1 ‑ Контрольный замер температуры; 2, 3 ‑ замер температуры после закачки соответственно 18 и 36 м3 (а), 8 и 18 м3 (б) воды
- •32. Определение пластового давления
- •33. Определение первоначального положения водонефтяного контакта
- •На кривой семиэлектродного зонда внк соответствует точке, расположенной на расстоянии размера l0 зонда ниже точки среднего значения
- •34. Определение первоначального положения газоводного контакта
- •35. Определение первоначального положения газонефтяного контакта
- •6 ‑ Первоначальные положения гнк и внк, 7 ‑ текущие положения гнк и внк
- •36. Контроль за перемещением внк
- •37. Контроль перемещения гнк и гвк
- •38. Контроль перемещения газовой шапки и перемещения нефтяной оторочки при эксплуатации нефтегазовых месторождений
- •39. Выделение обводненных продуктивных пластов в необсаженных скважинах
- •40. Выделение обводненных продуктивных пластов в обсаженных неперфорированных скважинах
- •1 ‑ Интервал перфорации, 2 ‑ интервал затрубной циркуляции.
- •41. Выделение обводненных продуктивных пластов в обсаженных перфорированных скважинах
- •42. Определение параметров выработки пластов
- •43. Определение коэффициентов текущей и остаточной нефтенасыщенности в необсаженных скважинах
- •44. Определение коэффициентов текущей и остаточной нефтенасыщенности в обсаженных скважинах
- •45. Определение коэффициента текущей и остаточной газонасыщенности газовых месторождений
- •46. Оценка коэффициента текущей и конечной нефтеотдачи по комплексу геофизических параметров
- •47. Оценка коэффициента текущей и конечной газоотдачи пластов по комплексу геофизических параметров
- •48. Особенности разработки, регулирования и контроля за эксплуатацией нефтегазовых залежей
- •49. Выделение интервалов притока пласта
- •II ‑ влагограмма
- •50. Определение продуктивности (приемистости) пласта
- •51. Определение работающей мощности пласта
- •1 ‑ Глина, 2 ‑ песчаник нефтеносный, 3 ‑ интервал перфорации,
- •4 ‑ Работающие мощности
- •52. Изучение технического состояния скважин. Общие положения
- •53. Оценка качества цементирования колонн по термометрии
- •54. Оценка качества цементирования колонн по методу радиоактивных изотопов
- •55. Оценка качества цементирования по гамма-гамма методу
- •56. Оценка качества цементирования по акустике
- •57. Выявление дефектов обсадных и насосно-компрессорных труб
- •58. Выявление негерметичности обсадных колонн
- •I ‑ геотерма; II ‑ замер после снижения уровня жидкости в стволе скважины на 200 м;
- •1 ‑ Глина, 2 ‑ алевролит, 3 ‑ песчаник, 4 ‑ место притока воды
- •I ‑ прямой зонд 50 см, II ‑ обращенный зонд 25 см; 1 ‑ цемент в затрубном пространстве, 2 ‑ приток нефти, 3 ‑ приток воды, 4 ‑ песчаник водоносный,
- •5 ‑ Глина, 6 ‑ алевролит, 7 ‑ песчаник нефтеносный, 8 ‑известняк
- •59. Выявление интервалов затрубной циркуляции флюидов
- •2 ‑ Направление движения флюида, 3 ‑ термограмма, 4 ‑ геотерма,
- •5 ‑ Линия, параллельная оси глубин
- •60. Выявление уровня жидкости, интервалов солевых и парафиновых отложений
- •61. Методы интенсификации притоков нефти
- •62. Интенсификация притока и приемистости пласта с помощью соляно-кислотной обработки
- •63. Интенсификация притока с помощью тепловых методов
- •64. Интенсификация притока с помощью внутрипластового горения
- •65. Контроль гидравлического разрыва пласта
- •66. Контроль за барохимическим воздействием на пласт
- •5 ‑ Интервал перфорации
- •67. Метод акустического и комбинированного воздействия на пласт
- •68. Электрообработка нефтяных скважин мощными импульсными источниками тока с целью повышения нефтеотдачи
- •69. Горизонтальные скважины
- •70. Задачи, решаемые геофизическими методами в горизонтальных скважинах
- •71. Геофизические исследования при строительстве гс и ргс
- •72. Геофизические исследования горизонтальных скважин в процессе бурения
- •73. Геофизические исследования горизонтальных скважин после бурения
- •74. Геофизические исследования горизонтальных скважин в процессе их освоения
- •75. Геофизические исследования горизонтальных скважин в процессе их испытания
- •76. Геофизические исследования горизонтальных скважин в процессе их эксплуатации
- •Методические рекомендации для преподавателя
- •Методические указания для студентов
- •Контрольные вопросы
- •Список литературы
- •Дополнительный
6 ‑ Первоначальные положения гнк и внк, 7 ‑ текущие положения гнк и внк
Поскольку среднее время жизни тепловых нейтронов в газоносных пластах намного больше, чем в нефтеносных или водоносных, то первые будут отличаться значительными превышениями нормированных показаний на большей временной задержке по сравнению с малой. Так как ИННМ имеет больший радиус исследования, чем стационарные нейтронные методы (СНМ), включая и многозондовые, такой способ определения ГНК наиболее эффективен;
3) по данным геохимических методов исследования скважин. Увеличение отношения содержания метана к содержанию пропана к = СН4/С2Н6 > 1 свидетельствует о газонасыщенности коллектора (рис. 25, е). Этот способ наиболее эффективен при установлении ГНК в сильно глинистых, песчаных и карбонатных коллекторах, где ядерные методы не позволяют расчленить газоносные и нефтеносные участки пласта;
4) по данным термометрии. Газоносная часть пласта выделяется отрицательной аномалией температуры;
5) по данным акустических методов. На кривых широкополосного акустического метода газоносная часть пласта характеризуется большим коэффициентом затухания продольной волны и малым поперечной волны по сравнению с нефтеносной частью пласта.
Установление положения ГНК или ГВК в неоднородных (по пористости и глинистости) коллекторах часто представляет собой трудную задачу. В этом случае дает эффект комплексирование данных нейтронных методов и гамма-метода. Построение единой палетки для определения ГНК в неоднородных коллекторах по этим данным затруднено из-за различной дифференцирующей способности радиоактивных методов, вызванной нестандартностью аппаратуры, несовершенством градуировки и другими причинами, а также из-за влияния диаметров скважины, приборов и обсадной колонны и их эксцентриситетов на регистрируемые параметры.
Более простым и надежным способом установления местоположения ГНК или ГВК в неоднородных коллекторах является использование корреляционных связей между показаниями нейтронных методов и гамма-метода, установленных для каждой скважины по нескольким интервалам заведомо нефте-и газонасыщенных коллекторов. Поскольку разрезы скважин исследуют нейтронными и гамма-методами одновременно, то погрешности измеряемых параметров, обусловленные эксцентриситетами прибора, колонны и другими возможными факторами, примерно одинаково влияют на определяемые величины и несущественно сказываются на устанавливаемых связях.
В общем случае связь между показаниями нейтронного гамма-метода и гамма-метода описывается уравнением
Inγ=aInγ+b+2σI,
где а и b ‑ коэффициенты, зависящие от скважинных условий регистрации диаграмм; Inγ ‑ показания нейтронного гамма-метода и гамма-метода; +2σI ‑ средняя квадратичная погрешность измерений показаний радиоактивных методов.
Разность показаний нейтронного гамма-метода против газоносных и нефтеносных пластов должна превышать погрешность измерений σJnγ , т.е. ΔJnγ > σJnγ. Для изучаемого пласта-коллектора по уравнению рассчитывают предельное значение Jnγ нп кр в случае его нефтенасыщения или водонасыщения и сравнивают с замеренным значением Inγ против этого пласта. Если зарегистрированное значение Inγ больше Inγ нп кр, то пласт считается газонасыщенным. По глубине подошвы первого газоносного пласта в разрезе залежи устанавливают положение ГНК или ГВК.
Имеется способ графического сопоставления Iγ и Inγ по отдельным скважинам с целью определения положения ГНК и ГВК. В наиболее сложных ситуациях для определения положения ВНК, ГНК, ГВК используют данные испытателей пластов на трубах и кабеле.
Контрольные вопросы
Какими способами можно определить положение ГНК?
Между какими методами устанавливается корреляционная связь для выделения ГНК, ГВК?
