
- •Содержание
- •Лекция 1 Предмет и задачи курса, его значение для химической технологии
- •Классификация процессов химической технологии
- •Классификация процессов
- •Организация процессов
- •Применение математических моделей к описанию и изучению основных процессов.
- •Постановка задачи
- •Анализ теоретических основ процесса (составление физической модели процесса)
- •Составление математической модели процесса
- •Алгоритмизация математической модели
- •Параметрическая идентификация модели
- •Проверка адекватности математической модели
- •Моделирование процесса
- •Анализ полученной информации
- •Лекция 2 Основные принципы анализа и расчета процессов и аппаратов.
- •Применение основных физических законов к изучению процессов химической технологии
- •Статика и кинетика процессов.
- •Общие методы расчета химической аппаратуры
- •Особенности расчетов процессов и аппаратов:
- •Лекция 3 Основы гидравлики
- •Гидростатика
- •Основные физические свойства сплошных сред Удельный вес
- •Плотность
- •Сжимаемость
- •Давление
- •Гидростатическое давление. Дифференциальное уравнение равновесия жидкости Эйлера
- •Основные характеристики движения жидкостей Скорость и расход жидкости
- •Гидравлический радиус и эквивалентный диаметр
- •Установившийся и неустановившийся потоки
- •Режимы движения жидкости
- •Распределение скоростей и расход жидкости при установившемся ламинарном потоке
- •Некоторые характеристики турбулентного потока
- •Уравнение неразрывности (сплошности) потока
- •Дифференциальное уравнение движения Эйлера
- •Дифференциальные уравнения движения Навье–Стокса
- •Лекции 6 Уравнение Бернулли
- •Практические приложения уравнения Бернулли
- •Принципы измерения скорости и расхода жидкости
- •Истечение жидкостей
- •Истечение при переменном уровне жидкости в сосуде с целью определения времени опорожнения сосудов
- •Лекция 7
- •7.1 Понятие о моделировании процессов
- •7.2 Условия и теоремы подобия
- •7.2.1 Первая теорема подобия
- •7.2.2 Вторая теорема подобия
- •7.2.3 Третья теорема подобия
- •7.3 Гидродинамическое подобие
- •7.3.1 Подобное преобразование уравнений Навье–Стокса. Основные критерии гидродинамического подобия
- •7.3.2 Модифицированные и производные критерии подобия
- •Лекция 8
- •8.1 Гидравлические сопротивления трубопроводов в аппарате: потеря напора на трение и на местные сопротивления
- •8.1.1 Сопротивление трения.
- •8.1.2 Зависимость коэффициента трения от критерия Рейнольдса
- •8.1.3 Коэффициенты местного сопротивления.
- •Лекция 9
- •9.1 Перемещение жидкостей. Классификация насосов, применяемых в химической технологии
- •9.1.1 Классификация насосов
- •9.2 Основные параметры насосов
- •9.3 Напор насоса. Высота всасывания
- •9.3.1 Напор
- •9.3.2 Высота всасывания.
Моделирование процесса
Этот этап заключается в решении на ЭВМ математической модели процесса при варьировании параметров процесса в интересующем для данного исследования диапазоне.
Анализ полученной информации
Это заключительный этап решения задачи. Он сводится к изучению и проверке результатов, полученных при решении математической модели. При этом любому не предполагаемому заранее решению необходимо дать рациональное объяснение, чтобы гарантировать себя от ошибок, которые могут возникнуть в результате вычислений.
В каждом реальном процессе параметры в силу различных причин не остаются постоянными, причем они могут меняться в довольно широком диапазоне. Поэтому необходимо проводить анализ функционирования смоделированного процесса при изменении различных параметров.
Такой анализ, как правило, преследует три основные цели:
1) исследовать поведение модели при варьировании изменяющихся параметров;
2) определить, является ли данная модель работоспособной при варьировании изменяющихся параметров и, соответственно, определить пределы работоспособности модели;
3) скорректировать модель с целью расширения диапазона ее работоспособности и улучшения ее эксплуатационных характеристик.
На основании проведенного анализа принимают решение – выдать рекомендации для практической реализации или продолжить исследование.
Лекция 2 Основные принципы анализа и расчета процессов и аппаратов.
Процессы химической технологии связаны с разнообразными физическими и химическими явлениями. Однако большинство этих процессов характеризуется сравнительно ограниченным числом физических законов. Применение основных законов физики к изучению процессов химической технологии составляет теоретическую основу курса «Процессы и аппараты».
Применение основных физических законов к изучению процессов химической технологии
Так, на законах сохранения массы и энергии основаны материальный и энергетический балансы. Для большинства процессов весьма важное значение имеют законы, характеризующие условия равновесия процессов, а также законы, описывающие изменения в системах, не находящихся в равновесии.
Материальный баланс. По закону
сохранения массы, количество веществ,
поступающих на переработку (
),
равно количеству веществ, получаемых
в результате переработки (
),
т. е. приход вещества равен расходу. Это
можно представить в виде уравнения
материального баланса:
Для периодических процессов материальный баланс составляется на одну операцию, для непрерывных процессов – за единицу времени, например за 1 ч.
Материальный баланс можно составить для одного аппарата, для его части или для группы аппаратов. В то же время материальный баланс может быть составлен для всех перерабатываемых веществ или только для одного из компонентов.
Рассмотрим, например, фильтрование суспензии. В результате фильтрования получаются осадок и фильтрат. В данном случае перерабатываемый материал состоит из двух компонентов: твердого вещества и жидкости. Уравнение материального баланса можно составить либо для общего количества суспензии, либо для твердого вещества, либо для жидкости. Из этих трех уравнений независимыми будут только два. Так, уравнение материального баланса для общего количества суспензии получится, если сложить почленно уравнения материального баланса для твердого вещества и для жидкости.
Энергетический баланс. По закону сохранения энергии, количество энергии, введенной в процесс, равно количеству ее, полученному в результате проведения процесса, т. е. приход энергии равен расходу ее.
Энергия может вводиться в процесс и отводиться вместе с участвующими в нем веществами или отдельно от них. Энергия, вводимая и отводимая с веществами, состоит из внутренней, потенциальной и кинетической энергии этих веществ.
К энергии, вводимой и отводимой из процесса отдельно от участвующих в нем веществ, относятся: тепло, подводимое в аппарат путем его обогрева через стейку или электрическим током; механическая работа, затрачиваемая в насосе или компрессоре, а также тепло, теряемое аппаратом в окружающую среду.
Наиболее общим выражением энергетического баланса применительно к процессам химической технологии является обобщенное уравнение Бернулли (рассмотрим позже, в разделе гидравлики).