
- •Лекция 3. Мониторинг атмосферного воздуха
- •1. Классификация источников загрязнения.
- •2. Нормирование качества атмосферного воздуха
- •3.Характеристика загрязняющих атмосферу веществ.
- •4.Биомониторинг загрязняющих веществ.
- •4.1. Биомониторинг двуокиси серы.
- •4.2.Аммиак
- •4.4.Хлористый водород и соляная кислота.
- •4.5.Твердые частицы и тяжелые металлы.
- •4.6. Смеси загрязняющих веществ.
- •5. Наблюдения за загрязнением атмосферного воздуха
- •5.1. Организация сети наблюдений за загрязнением атмосферного воздуха
- •5.1.1. Проведение наблюдений за загрязнением атмосферы на стационарных постах
- •5.1.2. Проведение наблюдений за загрязнением атмосферы на маршрутных постах
- •5.1.3. Проведение наблюдений за загрязнением атмосферы на передвижных (подфакельных) постах
- •5.1.4. Наблюдения за загрязнением атмосферного воздуха автотранспортом
- •5.1.5. Наблюдения за радиоактивным загрязнением атмосферного воздуха
- •5.1.6. Мониторинг загрязнения снежного покрова
- •5.1.7. Наблюдения за фоновым состоянием атмосферы
- •5.2. Выбор места контроля загрязнения и его источника
- •5.3. Виды проб
- •5.4. Отбор проб воздуха
- •5.4.1. Отбор проб в жидкие среды
- •5.4.2. Отбор проб на твердые сорбенты
- •5.4.3. Криогенное концентрирование
- •5.4.4. Отбор проб в контейнеры
- •5.4.5. Концентрирование на фильтрах
- •5.4.6. Аппаратура и методики отбора проб
- •5.4.7. Общие требования к отбору проб воздуха
- •5.5. Стабилизация и хранение проб воздуха
- •5.6. Современные методы контроля загрязнения воздушной среды
- •5.6.1. Наиболее распространенные инструментальные методы контроля загрязнения атмосферы
- •5.6.2. Измерение концентраций вредных веществ индикаторными трубками
- •5.6.3. Индивидуальная активная и пассивная дозиметрия
- •5.7. Обобщение результатов наблюдений за уровнем загрязнения атмосферы
5.4.3. Криогенное концентрирование
Криогенное концентрирование применяют при отборе из воздуха нестабильных и реакционно-способных соединений. Техника этого метода сводится к пропусканию исследуемого воздуха через охлаждаемое сорбционное устройство с большой поверхностью, например через стальные или стеклянные трубки, заполненные инертным носителем (стеклянными шариками, стеклянной ватой). В качестве хладагентов используют следующие смеси:
лед — вода (0 °С);
лед — хлорид натрия (—16 °С);
твердая углекислота — ацетон (—80 °С);
жидкий азот (—185 °С).
Степень обогащения пробы целевыми компонентами может быть при этом очень высокой (100—1000 раз и более). Однако применение такого способа извлечения примесей из воздуха затрудняет предварительное удаление влаги, которая, конденсируясь в ловушках, мешает газо-хроматографическому определению примесей и увеличивает предел их определения. Эффективность криогенного извлечения примесей из воздуха очень высока — от 91 до 100%. Этот метод целесообразно использовать для извлечения таких примесей, которые при обычной температуре могут взаимодействовать с материалом ловушек, что делает пробоотбор невозможным.
1. Сжатие воздуха .Атмосферный воздух закачивается, фильтруется и сжимается компрессором до примерно 6 бар.
2. Предварительное охлаждение воздуха. Чтобы разделить воздух на его компоненты, необходимо его охладить до чрезвычайно низкой температуры. Первый шаг, сжатый воздух предварительно охлаждается холодной водой.
3. Очистка воздуха. Примеси, такие как водный пар и углекислый газ удаляются из воздуха при помощи так называемого молекулярного сита.
4. Охлаждение воздуха. Поскольку газы, из которых состоит воздух, сжижаются только при очень низких температурах, очищенный воздух в главном теплообменнике охлаждается до приблизительно -175°C. Охлаждение достигается посредством внутреннего обмена высокой температуры, в котором потоки холодного газа, произведенного во время процесса, охлаждают сжатый воздух. Быстрый сброс давления заставляет сжатый воздух охлаждаться далее, посредством чего он подвергается частичному сжижению. После этого воздух готов для использования в разделительной колоне, где фактическое происходит разделение воздуха на компоненты.
5. Разделение воздуха. Разделение воздуха на чистый кислород и чистый азот происходит в двух колонах, среднего давления и колоне низкого давления. Процесс разделения становится возможным благодаря различным точкам кипения компонентов воздуха. Кислород превращается в жидкость при -183°C и азот при -196°C. Непрерывное испарение и конденсирование, вызванное интенсивным обменом и высокой температурой между поднимающимся паром и спускающейся жидкостью, концентрируют чистый азот наверху колоны низкого давления и чистый кислород в ее основании. Аргон отделяется в дополнительных колонах при помощи дополнительных мероприятий.
6. Отбор и хранение. Газообразный кислород и азот поступают в трубопроводы для транспортировки конечному потребителю, например, металлургическому предприятию. В жидкой форме кислород, азот и аргон сохраняются в специальных резервуарах и транспортируются клиентам транспортными цистернами.