- •1. Частотний розподіл використання електричних та оптичних кабельних ліній передачі.
- •Загальні відомості про мережі електрозв’язку
- •3. Класифікація кабельних ліній передачі.
- •4. Основні вимоги, які висуваються до кабельних ліній передачі.
- •5.Будова та основне призначення симетричних пар, зіркових четвірок, коаксіалів.
- •6. Склад та будова типового кабелю лінії зв'язку на металевих провідниках.
- •7. Класифікація матеріалів, що складають елементарні типи кабельних лінії.
- •13. Розрахунок напруги, хвильового опору, мощности та коефіцієнтів затухання.
- •14. Первинні параметри коаксіальної лінії.
- •15. Вторинні параметри коаксіальної лінії.
- •17. Первинні та вторинні параметри симетричної пари.
- •18.Параметри взаємного впливу між двома коаксіальними лініями.
- •19. Порівняльні характеристики різноманітних ліній перечачи. Переваги волоконо-оптичних ліній.
- •20. Типова структура волоконо-оптичної лінії.
- •21. Квантово-електронні модулі, підсилювачі та лінійні регенератори.
- •22. Найпростіші двохшарові світловоди.
- •24.Однополярізаційнї світловоди. Світловоди інтегральної оптики.
- •25. Показник заломлення, нормована частота, числова апертура, фазова та групова скорості розповсюдження світлових хвиль.
- •26.Одно- та багатомодові свтловоди
- •27.Спектральна залежність втрат в одномодовому світловоді.
- •28. Материалы, применяемые для изготовления волоконных световодов.
- •29.Технологии изготовления световодов
- •30.Наближенні рішення рівнянь Максвела для круглих слоїстих світловодів.
- •31. Дисперсійні залежності вс зі ступінчатим профілем показника заломлення
- •32.Картини полів основних видів хвиль волоконного світловоду.
- •33.Световоды со смещенной дисперсией
- •34. Основні види дисперсії вс.
- •34. 35. 36. 37. Внутрішньомодова, міжмодова та матеріальна дисперсії.
- •35. Внутримодовая дисперсия (волноводная)
- •36. Межмодовая дисперсия.
- •37. Материальная дисперсия
- •38. Поляризационная модовая дисперсия
- •39. Втрати однорідних волоконних світловодів.
- •40. Втрати на згибах волоконних світоводів.
- •41. Втрати що виникають при стиковці одномодових волоконних світловодів. Роз'ємні та нероз'ємні з'єднання волоконних світловодів.
- •42. Мультиплексори, демультиплексори та делителі міцності.
- •43. Розрахунок довжини регенераційних участків.
- •45.Параметри фотодіодів.
- •46. Класифікація оптичних кабелів.
- •47. Типові конструкції оптичних кабелів.
- •48. Прокладка оптичних кабелів.
- •51.Світлодіоди.
- •52.Пристрої узгодження активних елементів з оптичним кабелем.
- •53. Характеристики инжекционных(светоизлучающих) лазеров
- •54. Лазери з періодичною структурою зворотнього зв'язку.
- •56.Структури фотодетекторів
- •57. Пасивні елементи трактів волз.
- •58. Оптические разветвители
- •59. Оптические мультиплексоры.
- •60. Оптические переключатели
- •61.Оптичні ізолятори.
- •62.Підсилювачі трактів волз (Оптические усилители волз)
- •63.Конвертори трактів волз.
- •64. Усилители edfa.
- •65. Параметры edfa
- •66.Параметри приймачів волз (Технические характеристики фотоприемников)
- •67. Призначення, будова та характеристики лінійних регенераторів.
- •68. Діапазони розподілу вікон прозорості світловодів.
- •71.Властивості солітонів оптичних ліній.
- •72.Солитонні лінії зв’язку.
- •73.Властивості фотонних кристалів.
- •74.Переваги пристроїв на основі фотонних кристалів.
21. Квантово-електронні модулі, підсилювачі та лінійні регенератори.
Для повышения надежности и снижения требований к условиям эксплуатации и монтажа источники и приемники для ВОЛС выполняют в КЭМ, предназначенных для приема и передачи информации по ВОЛС со стандартными скоростями 2,048; 8,448; 34,448; 139,264 Мбит/с
Квантово-электронный модуль (КЭМ) позволяет подключать с одной стороны аппаратуру (передачи или приема), а с другой — оптический кабель. На передаче модуль обеспечивает преобразование электрического сигнала в оптический, а на приеме — обратное преобразование. В состав КЭМ на передаче входят: полупроводниковый источник излучения с электронной схемой возбуждения (ИЛ), согласующие устройства, обеспечивающие эффективный ввод излучения в волокно и разъемный соединитель, с помощью которого осуществляются подсоединение световода и ввод в него оптического сигнала.
В состав КЭМ на приеме входят согласующее устройство, разъемный соединитель, полупроводниковый фотодетектор, преобразующий оптический сигнал в электрический, и малошумящий усилитель.
Для уменьшения зависимости характеристик от температуры и времени наработки используют систему стабилизации выходной мощности, поддерживающую постоянную выходную мощность излучения путем соответствующего изменения тока накачки. В процессе деградации источника излучения при достижении предельного Iн система встроенной диагностики формирует на специальном выходе модуля сигнал потенциального отказа, который используется для выявления КЭМ, отработавшего свой ресурс. Входной формирователь обеспечивает согласование КЭМ со стандартными сигналами. Схема блокировки предотвращает возникновение нежелательных режимов работы ИЛ и блокирует его работу при отсутствии входного сигнала.
Линейный регенератор. Через определенные расстояния (10...50 км), обусловленные дисперсией или затуханием кабеля, вдоль оптической линии располагаются линейные регенераторы (ЛР). В ЛР сигнал восстанавливается и усиливается до требуемого значения.
ОЭП – оптикоэлектрический преобразователь, ЭОП – электрооптический преобразователь.
В регенераторе, содержащем два полукомплекта (отдельно для прямого и обратного направлений передачи), оптический сигнал преобразуется в электрический. В таком виде он регенерируется, усиливается и затем обратно преобразуется в оптический сигнал, который далее передается по ОК (оптический кабель). Оптический кабель подключается к ОЭП приемника через разъемный соединитель.
Оптический усилитель не осуществляет оптоэлектронного преобразования. Он, используя специальные активные среды и лазеры накачки, усиливает проходящий оптический сигнал, благодаря индуцированному излучению. Однако, есть две основные причины, которые делают применение усилителя более предпочтительным.
1. Качество сигналов, передаваемых по оптическому волокну, остается очень высоким вследствие малой дисперсии и затухания. Также не велик уровень вносимых шумов из-за подверженности волокна влиянию электромагнитного излучения. Поэтому ретрансляция передаваемых данных простым усилением без полной регенерации становится весьма эффективной.
2. Оптический усилитель является более универсальным устройством, поскольку в отличии от регенератора он не привязан к стандарту передающегося сигнала или определенной частоте модуляции.
На практике на один регенератор может приходиться несколько последовательно расположенных оптических усилителей (до 4-8).
