- •1. Частотний розподіл використання електричних та оптичних кабельних ліній передачі.
- •Загальні відомості про мережі електрозв’язку
- •3. Класифікація кабельних ліній передачі.
- •4. Основні вимоги, які висуваються до кабельних ліній передачі.
- •5.Будова та основне призначення симетричних пар, зіркових четвірок, коаксіалів.
- •6. Склад та будова типового кабелю лінії зв'язку на металевих провідниках.
- •7. Класифікація матеріалів, що складають елементарні типи кабельних лінії.
- •13. Розрахунок напруги, хвильового опору, мощности та коефіцієнтів затухання.
- •14. Первинні параметри коаксіальної лінії.
- •15. Вторинні параметри коаксіальної лінії.
- •17. Первинні та вторинні параметри симетричної пари.
- •18.Параметри взаємного впливу між двома коаксіальними лініями.
- •19. Порівняльні характеристики різноманітних ліній перечачи. Переваги волоконо-оптичних ліній.
- •20. Типова структура волоконо-оптичної лінії.
- •21. Квантово-електронні модулі, підсилювачі та лінійні регенератори.
- •22. Найпростіші двохшарові світловоди.
- •24.Однополярізаційнї світловоди. Світловоди інтегральної оптики.
- •25. Показник заломлення, нормована частота, числова апертура, фазова та групова скорості розповсюдження світлових хвиль.
- •26.Одно- та багатомодові свтловоди
- •27.Спектральна залежність втрат в одномодовому світловоді.
- •28. Материалы, применяемые для изготовления волоконных световодов.
- •29.Технологии изготовления световодов
- •30.Наближенні рішення рівнянь Максвела для круглих слоїстих світловодів.
- •31. Дисперсійні залежності вс зі ступінчатим профілем показника заломлення
- •32.Картини полів основних видів хвиль волоконного світловоду.
- •33.Световоды со смещенной дисперсией
- •34. Основні види дисперсії вс.
- •34. 35. 36. 37. Внутрішньомодова, міжмодова та матеріальна дисперсії.
- •35. Внутримодовая дисперсия (волноводная)
- •36. Межмодовая дисперсия.
- •37. Материальная дисперсия
- •38. Поляризационная модовая дисперсия
- •39. Втрати однорідних волоконних світловодів.
- •40. Втрати на згибах волоконних світоводів.
- •41. Втрати що виникають при стиковці одномодових волоконних світловодів. Роз'ємні та нероз'ємні з'єднання волоконних світловодів.
- •42. Мультиплексори, демультиплексори та делителі міцності.
- •43. Розрахунок довжини регенераційних участків.
- •45.Параметри фотодіодів.
- •46. Класифікація оптичних кабелів.
- •47. Типові конструкції оптичних кабелів.
- •48. Прокладка оптичних кабелів.
- •51.Світлодіоди.
- •52.Пристрої узгодження активних елементів з оптичним кабелем.
- •53. Характеристики инжекционных(светоизлучающих) лазеров
- •54. Лазери з періодичною структурою зворотнього зв'язку.
- •56.Структури фотодетекторів
- •57. Пасивні елементи трактів волз.
- •58. Оптические разветвители
- •59. Оптические мультиплексоры.
- •60. Оптические переключатели
- •61.Оптичні ізолятори.
- •62.Підсилювачі трактів волз (Оптические усилители волз)
- •63.Конвертори трактів волз.
- •64. Усилители edfa.
- •65. Параметры edfa
- •66.Параметри приймачів волз (Технические характеристики фотоприемников)
- •67. Призначення, будова та характеристики лінійних регенераторів.
- •68. Діапазони розподілу вікон прозорості світловодів.
- •71.Властивості солітонів оптичних ліній.
- •72.Солитонні лінії зв’язку.
- •73.Властивості фотонних кристалів.
- •74.Переваги пристроїв на основі фотонних кристалів.
20. Типова структура волоконо-оптичної лінії.
И
нформация,
передаваемая абонентами через передатчик,
поступает на электрооптический
преобразователь (ЭОП), роль которого
выполняет лазер (Л) или светодиод (СД).
Здесь электрический сигнал преобразуется
в оптический и направляется в ОК. На
приеме оптический сигнал поступает в
оптико-электрический преобразователь
(ОЭП), в качестве которого используется
фотодиод (ФД), преобразующий оптический
сигнал в электрический. Таким образом,
на передающей стороне от передатчика
до ЭОП, а также на приемной стороне от
ЭОП до приемника действует электрический
сигнал, а от ЭОП до ОЭП по оптическому
кабелю проходит оптический сигнал.
Электрический сигнал, создаваемый
частотным или временным методом,
модулирует оптическую несущую, и в
модулируемом виде световой сигнал
передается по оптическому кабелю. В
основном используется способ модуляции
интенсивности оптической несущей, при
котором от апмлитуды электрического
сигнала зависит мощность излучения,
передаваемая в ОК.
Оптические системы передачи, как правило являются цифровыми (импульсными). Это объясняется тем, что передача аналоговых сигналов требует высокой степени линейности промежуточных усилителей, которую трудно обеспечить в оптических системах.
Через определенные расстояния (5, ...., 100 км), обусловленные энергетическим потенциалом аппаратуры и величиной потерь в ОК, вдоль оптической линии располагаются линейные регенераторы (ЛР), в которых сигнал восстанавливается и усиливается до требуемого значения. Кроме того, для преобразования кода и согласования элементов схемы имеются кодирующие устройства - преобразователи кода (ПК) и согласующие устройства (СУ). Преобразователь кода формирует трубуемую последовательность импульсов и осуществляет согласование уровней по мощности между электрическими и оптическими элементами схемы ( от аппаратуры ИКМ поступает высокий уровень, а для электропреобразователей необходим весьма малый уровень). Передающие и приемные согласующие устройства формируют и согласовывают диаграммы направленности (диаграмма направленности - это телесный угол, в котором действует максимальная интенсивность излучения) и апертурный угол между приемопередающими устройствами и кабелем. Применяются также устройства ввода и вывода излучения, сростки, для сращивания оптических волокон и кабелей, направленные ответвители, фильтры и другие элементы оптического тракта.
Типовая схема системы связи, использующей ВОЛС, показана на рис. 1.1. Аналоговый сигнал, генерируемый оконечным оборудованием данных (ООД), например, телефоном, терминалом, видеокамерой и т.д., приходит на узел коммутации, где аналого-цифровой преобразователь (кодер) оцифровывает его в битовый поток. Битовый поток используется для модуляции оптического передатчика, который передает серию оптических импульсов в оптическое волокно. На приемной стороне импульсы света преобразуются обратно в электрический сигнал при помощи оптического приемника. Декодерная часть коммуникационной системы преобразует бинарный электрический поток обратно в аналоговый сигнал ООД. Обычно кодеры и декодеры, а так же оптические приемники и передатчики совмещаются в одном устройстве, так что образуется двунаправленный канал связи.
Типовая схема системы связи с использованием ВОЛС "точка-точка"
