Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
подарок от добрейшей души человека.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
13.59 Mб
Скачать

63.Конвертори трактів волз.

Оптические конвертеры обеспечивают преобразование электрического сигнала из витой пары и тонкого коаксиального кабеля в оптический сигнал, идущий по многомодовому или одномодовому волокну. Конвертер, в отличие от трансивера, должен иметь свой отдельный блок питания. Конвертеры могут выпускаются как в виде отдельной небольшой коробочки с внешним блоком питания, так и в виде шасси 19", которое может наполняться разнообразными конвертерными модулями. Исполнение в виде шасси особенно удобно при обустройстве центральных оптических узлов сетей с топологией звезды. Разнообразные модули позволяют подключаться как по многомодовому, так и по одномодовому волокну, как по Ethernet, так и по Fast Ethernet, Для повышения надежности, шасси некоторых производителей могут иметь резервирование по питанию.

Конвертеры 10Base-T/10Base-FL сразу преобразовывают манчестерский электрический код на входе в манчестерский оптический сигнал на выходе и наоборот, внося минимальную задержку (1-3 бита). Большинство конвертеров могут поддерживать как полудуплексную, так и дуплексную связь, причем в первом случае в устройство внедряется специальный узел обнаружения коллизий. Но фактически, даже при наличии коллизий, канал связи остается дуплексным, а работа устройства не выходит за пределы уровня MDI.

Особенностью оптических конвертеров Ethernet BNC (10Base2/10Base-FL), которые подключаются к коаксиальному сегменту обычно вместо терминатора, является ретрансляция сигнала коллизии в коаксиальный сегмент. Сигнал коллизии генерируется и передается в коаксиальный сегмент всякий раз, когда на конвертер приходят одновременно данные из коаксиального и волоконно-оптического сегментов, или приходит сигнал коллизии по коаксиальному сегменту. В последнем случае говорят, что сигнал коллизии отражается конвертером обратно в коаксиальный сегмент. Фактор отражения приводит к эффективному увеличению длины сегмента в два раза и запрещает установку на обе стороны коаксиального сегмента рассматриваемых конвертеров - с одной стороны обязательно должен быть стандартный терминатор 50 Ом.

64. Усилители edfa.

Толчок к бурному развитию DWDM сетей дало появление недорогих и эффективных волоконных эрбиевых усилителей (EDFA), работающих в промежутке от 1525 до 1565 нм (третье окно прозрачности кварцевого волокна). Этот тип оптического усилителя наиболее широко распространен и является ключевым элементом в технологии полностью оптических сетей, по­скольку он позволяет усиливать сигнал в широком спектральном диапазоне. Усилители на волокне, легированном эрбием EDFA (Erbium-Doped Fiber Amplifier) за последние несколько лет произвели революцию в телекоммуникационной промышленности. Они обеспечивают непосредственное усиление оптических сигналов, без их преобразования в электрические сигналы и обратно, обладают низким уровнем шумов, а их рабочий диапазон длин волн практически точно соответствует окну прозрачности кварцевого оптического волокна (рис. 2.20). Именно благодаря появлению усилителей с таким сочетанием качеств линии связи и сети на основе систем DWDM стали экономически привлекательными.

Рис. 2.20 Зависимость коэффициента усиления EDFA от длины волны

Усилитель EDFA состоит из отрезка волокна, легированного эрбием. В таком волокне сигналы определенных длин волн могут усиливаться за счет энергии внешнего излучения накачки. В простейших конструкциях EDFA усиление происходит в достаточно узком диапазоне длин волн – примерно от 1525 нм до 1565 нм. В эти 40 нм умещается несколько десятков каналов DWDM.

Усилители EDFA полностью "прозрачны" – не зависят от используемых протоколов, форматов, скорости передачи и (в пределах указанных выше ограничений) длины волны оптического сигнала. При использовании усилителей EDFA требуется тщательно учитывать их неоднородное спектральное усиление и шум, вносимый ими за счет усиленной спонтанной эмиссии . В силу особенностей конструкции усилители EDFA вносят определенный шум в усили­ваемый сигнал, приводя к уменьшению соотношения сигнал/шум и ограничивая число каска­дов и расстояние между двумя электронными регенераторами. Этот недостаток не помешал дальнейшему стремительному развитию технологии и серийно­го производства усилителей EDFA.

Сети с усилителями EDFA имеют многочисленные преимущества. Пропускную способность таких сетей можно наращивать экономично и постепенно, добавляя новые каналы по мере роста потребности. Применение усилителей EDFA позволяет создавать полностью оптические сети, в которых обработка сигнала электронными компонентами происходит только в начальной (где информация впервые попадает в сеть) и конечной (где информация достигает конечного получателя) точках сети.

Разработка различных схем мощной накачки позволила создать усилители EDFA с расширенным рабочим диапазоном от 1570 нм до 1605 нм (L-диапазон). Такие усилители также называют длинноволновыми усилителями LWEDFA (Long Wavelength EDFA).

Две разновидности усилителей EDFA с примесным волокном преобладают в коммерче­ских реализациях сегодня: на кремниевой основе, и на фтор-цирконатной основе . При очень схожем внутреннем строении эти усилители отличаются только заготовочным волокном. Оба типа усилителей способны работать во всем диапазоне выхода оптического из­лучения эрбия от 1530 нм до 1560 нм. Однако оптические усилители на кремниевой основе не имеют столь ровной передаточной кривой коэффициента усиления, как усилители на фтор-цирконатной основе.

Этот тип оптического усилителя наиболее широко распространен и является ключевым элементом в технологии полностью оптических сетей, по­скольку он позволяет усиливать сигнал в широком спектральном диапазоне.

Н а рис. 4.15 приведена схема усилителя на примесном волокне. Слабый входной опти­ческий сигнал (1) проходит через оптический изолятор (2), который пропускает свет в прямом направлении - слева направо, но не пропускает рассеянный свет в обратном направлении, далее проходит через блок фильтров (3), которые блокируют световой поток на длине волны накачки, но прозрачны к длине волны сигнала. Затем сигнал попадает в катушку с волокном, легированным примесью из редкоземельных элементов (4). Длина такого участка волокна со­ставляет несколько метров. Этот участок волокна подвергается сильному непрерывному излу­чению полупроводникового лазера (5), установленного с противоположенной стороны, с бо­лее короткой длиной волны накачки. Свет от лазера накачки - волна накачки (6) - возбуждает атомы примесей. Возбужденные состояния имеют большое время релаксации, чтобы спон­танно перейти в основное состояние. Однако при наличии слабого сигнала происходит инду­цированный переход атомов примесей из возбужденного состояния в основное с излучением света на той же длине волны и с той же самой фазой, что и повлекший это сигнал. Селектив­ный разветвитель (7) перенаправляет усиленный полезный сигнал (8) в выходное волокно (9). Дополнительный оптический изолятор на выходе (10) предотвращает попадание обратного рассеянного сигнала из выходного сегмента в активную область оптического усилителя.

Рис. 4.15. Оптический усилитель на примесном волокне

Активной средой усилителя является одномодовое волокно, сердцевина которого леги­руется примесями редкоземельных элементов с целью создания трехуровневой атомной сис­темы, рис. 4.16. Лазер накачки возбуждает электронную подсистему примесных атомов. В результате чего электроны с основного состояния (уровень А) переходят в возбужденное со­стояние (уровень В). Далее происходит ре­лаксация электронов с уровня В на промежу­точный уровень С. Когда заселенность уров­ня С становится достаточно высокой, так что образуется инверсная заселенность уровней А и С, то такая система способна индуциро­вано усиливать входной оптический сигнал в определенном диапазоне длин волн. Если же входной сигнал не нулевой, то происходит спонтанное излучение возбужденных атомов примесей, приводящее к шуму.

О собенности работы усилителя во многом зависят от типа примесей и от диа­пазона длин волн, в пределах которого он должен усиливать сигнал. Наиболее широко распространены усилители, в которых ис­пользуется кремниевое волокно, легированное эрбием. Такие усилители получили на­звание EDFA. Межатомное взаимодействие является причиной очень важного положи­тельного фактора - уширения уровней, что, в конечном итоге, обеспечивает усилителю широ­кую зону усиления сигнала [16]. В EDFA наиболее широкая зона усиления от 1530 до 1560 нм, соответствующая переходу , достигается при оптимальной длине волны лазера накачки 980 нм.

Рис. 4.16. Энергетическая диаграмма уровней атомной системы усилителя на примесном волокне

Усиление в другом окне прозрачности 1300 нм можно реализовать с использованием примесей празеодимия, однако такие оптические усилители не получили большого распро­странения.

К оэффициент усиления сигнала зависит от его входной амплитуды и длины волны. При малых входных сигналах амплитуда выходного сигнала линейно растет с ростом входного сигнала, коэффициент усиления достигает при этом своего максимального значения. Напри­мер, если входной сигнал 1 мкВт (-30 дБм), то выходной сигнал может быть на уровне 1 мВт (0 дБм), что соответствует усилению в 30 дБ. Но при большом входном сигнале сигнал на вы­ходе достигает своего насыщения, что приводит к падению коэффициента усиления. На рис. 4.17 показано, как ведет себя коэффициент усиления К для EDFA в зависимости от длины волны и при различных значениях мощности входного сигнала. Уменьшение К при = 1 мВт связано с насыщением усилителя. На кривой зависимости К от длины волны при малых значениях мощности входного сигнала заметны минимумы и максимумы. Отсутствие плато в широком диапазоне длин волн (от 1530 до 1560 нм) заставляет дополнительно на ли­нии из каскада оптических усилителей устанавливать эквалайзеры с целью выравнивания ам­плитуд мультиплексных сигналов разных длин волн. В то же время ведутся интенсивные ис­следования по выравниванию кривой усиления. Следует подчеркнуть, что построение усили­телей с такими характеристиками не является непреодолимой задачей, но скорее требует тщательно отработанной технологии производства всех элементов усилителя.

Рис. 4.17. Коэффициент усиления кремниевого EDFA при различных значениях

м ощности входного оптического сигнала (по материалам фирмы Corning)

Характерным для оптических усилителей является широкополосный собственный шум, рис. 4.18. Этот шум, которого избежать невозможно, главным образом связан со спонтанным излучением инверсно-заселенных уровней на примесных атомах.

Рис. 4.18. Мощность выходного сигнала и шума в EDFA