- •1. Частотний розподіл використання електричних та оптичних кабельних ліній передачі.
- •Загальні відомості про мережі електрозв’язку
- •3. Класифікація кабельних ліній передачі.
- •4. Основні вимоги, які висуваються до кабельних ліній передачі.
- •5.Будова та основне призначення симетричних пар, зіркових четвірок, коаксіалів.
- •6. Склад та будова типового кабелю лінії зв'язку на металевих провідниках.
- •7. Класифікація матеріалів, що складають елементарні типи кабельних лінії.
- •13. Розрахунок напруги, хвильового опору, мощности та коефіцієнтів затухання.
- •14. Первинні параметри коаксіальної лінії.
- •15. Вторинні параметри коаксіальної лінії.
- •17. Первинні та вторинні параметри симетричної пари.
- •18.Параметри взаємного впливу між двома коаксіальними лініями.
- •19. Порівняльні характеристики різноманітних ліній перечачи. Переваги волоконо-оптичних ліній.
- •20. Типова структура волоконо-оптичної лінії.
- •21. Квантово-електронні модулі, підсилювачі та лінійні регенератори.
- •22. Найпростіші двохшарові світловоди.
- •24.Однополярізаційнї світловоди. Світловоди інтегральної оптики.
- •25. Показник заломлення, нормована частота, числова апертура, фазова та групова скорості розповсюдження світлових хвиль.
- •26.Одно- та багатомодові свтловоди
- •27.Спектральна залежність втрат в одномодовому світловоді.
- •28. Материалы, применяемые для изготовления волоконных световодов.
- •29.Технологии изготовления световодов
- •30.Наближенні рішення рівнянь Максвела для круглих слоїстих світловодів.
- •31. Дисперсійні залежності вс зі ступінчатим профілем показника заломлення
- •32.Картини полів основних видів хвиль волоконного світловоду.
- •33.Световоды со смещенной дисперсией
- •34. Основні види дисперсії вс.
- •34. 35. 36. 37. Внутрішньомодова, міжмодова та матеріальна дисперсії.
- •35. Внутримодовая дисперсия (волноводная)
- •36. Межмодовая дисперсия.
- •37. Материальная дисперсия
- •38. Поляризационная модовая дисперсия
- •39. Втрати однорідних волоконних світловодів.
- •40. Втрати на згибах волоконних світоводів.
- •41. Втрати що виникають при стиковці одномодових волоконних світловодів. Роз'ємні та нероз'ємні з'єднання волоконних світловодів.
- •42. Мультиплексори, демультиплексори та делителі міцності.
- •43. Розрахунок довжини регенераційних участків.
- •45.Параметри фотодіодів.
- •46. Класифікація оптичних кабелів.
- •47. Типові конструкції оптичних кабелів.
- •48. Прокладка оптичних кабелів.
- •51.Світлодіоди.
- •52.Пристрої узгодження активних елементів з оптичним кабелем.
- •53. Характеристики инжекционных(светоизлучающих) лазеров
- •54. Лазери з періодичною структурою зворотнього зв'язку.
- •56.Структури фотодетекторів
- •57. Пасивні елементи трактів волз.
- •58. Оптические разветвители
- •59. Оптические мультиплексоры.
- •60. Оптические переключатели
- •61.Оптичні ізолятори.
- •62.Підсилювачі трактів волз (Оптические усилители волз)
- •63.Конвертори трактів волз.
- •64. Усилители edfa.
- •65. Параметры edfa
- •66.Параметри приймачів волз (Технические характеристики фотоприемников)
- •67. Призначення, будова та характеристики лінійних регенераторів.
- •68. Діапазони розподілу вікон прозорості світловодів.
- •71.Властивості солітонів оптичних ліній.
- •72.Солитонні лінії зв’язку.
- •73.Властивості фотонних кристалів.
- •74.Переваги пристроїв на основі фотонних кристалів.
56.Структури фотодетекторів
Детектор выполняет противоположную функцию по сравнению с источником: он преобразует оптическую энергию в электрическую и является оптоэлектронным преобразователем. Существуют разнообразные детекторы. Наиболее известный тип детектора — фотодиод, вырабатывающий ток при попадании на него света. В волоконной оптике достаточно интенсивно используются два вида фотодиодов: pin-типа и лавинный.
В фотодиоде происходит обратный процесс: свет, падающий на диод, приводит к генерации тока во внешнем контуре. Поглощение фотона приводит к появлению возбужденных электронов, переходящих из валентной зоны в зону проводимости. Данный процесс, в результате которого образуется пара электрон-дырка, получил название внутреннего поглощения. Эти носители тока при наличии приложенного смещающего напряжения дрейфуют вдоль вещества и возбуждают ток во внешнем контуре. В возникшей паре электрон-дырка в образовании тока во внешней цепи участвует электрон.
Простейшим видом фотодиода является р-n фотодиод, схематически изображенный на рис. 9.1. Данный вид фотодиода достаточно редко встречается в волоконной оптике.
Когда к нему
приложено
напряжение с обратным знаком (отрицательная
клемма батареи подключена
к участку проводника р-типа), через него
начинает течь слабый ток. Приложенное
электрическое поле создает обедненное
пространство по обе стороны
р-n
перехода. Обедненная
зона не имеет свободных носителей,
поэтому ее сопротивление очень велико,
и практически все падение напряжения
приходится на зону контакта.
В результате электрические силы очень
велики в области контакта и пренебрежимо
малы в других областях.
При поглощении падающего фотона связанному электрону передается достаточное количество энергии для перехода из валентной зоны в зону проводимости, при этом образуетя пара: свободный электрон + дырка. Если это происходит в обедненной зоне контакта, носители быстро разделяются и смещаются в противоположных направлениях. Это смещение возбуждает движение электронов и во внешнем контуре.
Две характеристики p-n-фотодиодов ограничивают их применение в большинстве волоконно-оптических приложений. Во-первых, для генерации тока достаточной силы требуется мощный световой источник. Во-вторых, наличие медленного отклика, обусловленного медленной диффузией, замедляет работу диода, делая его непригодным для средне- и высокоскоростных применений. Это позволяет использовать диод только в килогерцовом диапазоне.
Приемные оптоэлектронные модули (ПРОМ) являются важными элементами волоконно-оптической системы. Их функция - преобразование оптического сигнала, принятого из волокна, в электрический. Последний обрабатывается далее электронными устройствами.
Основными функциональными элементами ПРОМ являются:
• фотоприемник, преобразующий полученный оптический сигнал в электрическую форму;
• каскад электрических усилителей, усиливающих сигнал и преобразующих его в форму, пригодную к обработке;
• демодулятор, воспроизводящий первоначальную форму сигнала.
На практике функциональные элементы могут несколько отличаться у разных ПРОМ. Например, детектор типа лавинный фотодиод обеспечивает внутреннее усиление, в результате чего собственные шумы последующего электронного усилителя становятся не столь заметными по сравнению с уровнем полезного сигнала. В некоторых ПРОМ отсутствует демодулятор, или цепь принятия решения, поскольку электрический сигнал с выхода каскада усилителей приемлем для непосредственной обработки другими электронными устройствами. Иногда для более эффективной работы ПРОМ перед детектором устанавливается оптический усилитель.
На рис. 4.6 приведены функцион элементы аналогового (а) и цифрового (б) ПРОМ. Аналоговые ПРОМ принимают аналоговый оптический сигнал и на выходе также выдают аналоговый электрический сигнал. К аналоговым приемникам предъявляются требования высокой линейности преобразования и усиления сигнала при минимуме вносимых шумов - в противном случае возрастают искажения сигнала. На протяженных линиях с большим количеством приемо-передающих узлов искажения и шумы накапливаются, что снижает эффективность аналоговых многоретрансляционных линий связи.
При цифровой передаче не требуется очень точная ретрансляция форм импульсов. Цифровой приемник должен включать узел принятия решения или дискриминатор, имеющий установленные пороги на принятие сигналов 0 и 1, который распознает, какой сигнал пришел, устраняет шумы и восстанавливает необходимую амплитуду сигнала. Правильное выделение нужного сигнала может происходить при большом уровне шумов.
Принципы работы фотоприемника. Основным элементом ПРОМ является фотоприемник, изготавливаемый обычно из полупроводникового материала. В основе работы фотоприемника лежит явление внутреннего фотоэффекта, при котором в результате поглощения фотонов с энергией, превышающей энергию запрещенной зоны, происходит переход электронов из валентной зоны в зону проводимости (генерация электронно-дырочных пар). При наличии электрического потенциала с появлением электронно-дырочных пар от воздействия оптического сигнала появляется электрический ток, обусловленный движением электронов в зоне проводимости и дырок в валентной зоне. Эффективная регистрация генерируемых в полупроводнике электронно-дырочных пар обеспечивается путем разделения носителей заряда. Для этого используется конструкция с р-n переходом, которая называется фотодиодом. Из фотоприемников, применяемых ВОЛС, получили распространение p-i-n фотодиоды, лавинные фотодиоды, фототранзисторы.
Рассмотрим
принципы работы фотоприемника на примере
p-i-n фотодиода, для которого характерно
наличие i-слоя (слаболегированного
полупроводника n-типа) между слоями р+-и
п+-типа (+ означает сильное легирование),
рис. 4.7 а. Также i-слой называют обедненным
слоем, поскольку в нем нет свободных
носителей. На p-i-n структуру подается
напряжение с обратным смещением Uo (по
сравнению со светоизлучающим диодом).
Сильное легирование крайних слоев
делает их проводящими, и максимальное
значение электрического поля (градиент
потенциала) создается в i-слое. Но
поскольку нет свободных носителей в
i-слое, нет и электрического тока, так
что i-слой испытывает только поляризацию.
При наличии падающего излучения на
i-слой, в нем образуются свободные
электронно-дырочные пары. Они под
действием электрического поля быстро
разделяются и двигаются в противоположных
направлениях к своим электродам,
образуя электрический ток. Эффективным
является взаимодействие излучения
только с i-слоем, так как при попадании
фотонов в р+- и п+-слои возникает
диффузионный ток, который имеет большую
инерционность и ухудшает быстродействие.
Поэтому при изготовлении фотодиодов
стремятся делать р+- и п+-слои как можно
тоньше, а обедненную область достаточно
большой протяженности, чтобы она
полностью поглощала весь падающий свет.
Фотодиоды
могут изготавливаться из разных
материаловОднако часть падающего
излучения испытывает френелевское
отражение от фоточувствительной
поверхности из-за скачка показателей
преломления на границе между этой
поверхность и средой. Для уменьшения
отражения приемную поверхность
обедненного слоя покрывают антиотражающим
слоем
