- •1. Частотний розподіл використання електричних та оптичних кабельних ліній передачі.
- •Загальні відомості про мережі електрозв’язку
- •3. Класифікація кабельних ліній передачі.
- •4. Основні вимоги, які висуваються до кабельних ліній передачі.
- •5.Будова та основне призначення симетричних пар, зіркових четвірок, коаксіалів.
- •6. Склад та будова типового кабелю лінії зв'язку на металевих провідниках.
- •7. Класифікація матеріалів, що складають елементарні типи кабельних лінії.
- •13. Розрахунок напруги, хвильового опору, мощности та коефіцієнтів затухання.
- •14. Первинні параметри коаксіальної лінії.
- •15. Вторинні параметри коаксіальної лінії.
- •17. Первинні та вторинні параметри симетричної пари.
- •18.Параметри взаємного впливу між двома коаксіальними лініями.
- •19. Порівняльні характеристики різноманітних ліній перечачи. Переваги волоконо-оптичних ліній.
- •20. Типова структура волоконо-оптичної лінії.
- •21. Квантово-електронні модулі, підсилювачі та лінійні регенератори.
- •22. Найпростіші двохшарові світловоди.
- •24.Однополярізаційнї світловоди. Світловоди інтегральної оптики.
- •25. Показник заломлення, нормована частота, числова апертура, фазова та групова скорості розповсюдження світлових хвиль.
- •26.Одно- та багатомодові свтловоди
- •27.Спектральна залежність втрат в одномодовому світловоді.
- •28. Материалы, применяемые для изготовления волоконных световодов.
- •29.Технологии изготовления световодов
- •30.Наближенні рішення рівнянь Максвела для круглих слоїстих світловодів.
- •31. Дисперсійні залежності вс зі ступінчатим профілем показника заломлення
- •32.Картини полів основних видів хвиль волоконного світловоду.
- •33.Световоды со смещенной дисперсией
- •34. Основні види дисперсії вс.
- •34. 35. 36. 37. Внутрішньомодова, міжмодова та матеріальна дисперсії.
- •35. Внутримодовая дисперсия (волноводная)
- •36. Межмодовая дисперсия.
- •37. Материальная дисперсия
- •38. Поляризационная модовая дисперсия
- •39. Втрати однорідних волоконних світловодів.
- •40. Втрати на згибах волоконних світоводів.
- •41. Втрати що виникають при стиковці одномодових волоконних світловодів. Роз'ємні та нероз'ємні з'єднання волоконних світловодів.
- •42. Мультиплексори, демультиплексори та делителі міцності.
- •43. Розрахунок довжини регенераційних участків.
- •45.Параметри фотодіодів.
- •46. Класифікація оптичних кабелів.
- •47. Типові конструкції оптичних кабелів.
- •48. Прокладка оптичних кабелів.
- •51.Світлодіоди.
- •52.Пристрої узгодження активних елементів з оптичним кабелем.
- •53. Характеристики инжекционных(светоизлучающих) лазеров
- •54. Лазери з періодичною структурою зворотнього зв'язку.
- •56.Структури фотодетекторів
- •57. Пасивні елементи трактів волз.
- •58. Оптические разветвители
- •59. Оптические мультиплексоры.
- •60. Оптические переключатели
- •61.Оптичні ізолятори.
- •62.Підсилювачі трактів волз (Оптические усилители волз)
- •63.Конвертори трактів волз.
- •64. Усилители edfa.
- •65. Параметры edfa
- •66.Параметри приймачів волз (Технические характеристики фотоприемников)
- •67. Призначення, будова та характеристики лінійних регенераторів.
- •68. Діапазони розподілу вікон прозорості світловодів.
- •71.Властивості солітонів оптичних ліній.
- •72.Солитонні лінії зв’язку.
- •73.Властивості фотонних кристалів.
- •74.Переваги пристроїв на основі фотонних кристалів.
52.Пристрої узгодження активних елементів з оптичним кабелем.
В СИД, излучающем через боковую поверхность, размер этой поверхности достаточно велик. При этом лишь малая часть излучения передается волокну. Выходная мощность полупроводникового кристалла и мощность, передаваемая оптическому волокну, могут существенно различаться.
Модернизация структуры полупроводникового кристалла (использование диодов, излучающих через узкую боковую грань, или лазеров) приводит к улучшению выходной картины излучения, и крайне важным является хороший контакт источника с оптическим волокном
И
спользуются
источники с микролинзами,
приклеенными
с помощью эпоксидного
клея непосредственно к кристаллу. Линза
фокусирует свет в практически
однородное пятно на выходе источника.
Обычно размер этого пятна превосходит
размер волокна. Волокно может помещаться
в любом месте светового пятна, принимая
при этом одну и ту же оптическую мощность.
Линза может также размещаться на некотором расстоянии от поверхности кристалла и фокусировать свет. Линза на рис. 8.11 является компонентом приемной части источника и служит для подключения соединителя. При этом линза фокусирует свет непосредственно в волокно, закрепленное в корпусе соединителя.
Параболическая форма приемной части источника и линза позволяют коллимировать пучок света, сужая размер излучающего пятна и угловую диаграмму излучения. При коллимации световые лучи становятся однонаправленными и перестают расходиться.
В устройствах, называемых пигтейлами (pigtail), используется короткий отрезок оптического волокна, В светодиоде Барра волокно клеевым способом закрепляется непосредственно на полированной поверхности кристалла. Преимущество данного способа заключается в максимальном приближении волокна к поверхности активной среды кристалла. В других устройствах устанавливают пигтейл в непосредственной близости от поверхности кристалла. закрепление пигтейла вблизи кристалла позволяет вводить свет в волокно до того, как пучок света успеет расшириться.
Источники очень часто укомплектовываются выходными разъемами в виде приемных частей для разного типа оптических соединителей. К каждому виду распространенных оптических соединителей могут быть подобраны соответствующие приемные части.
53. Характеристики инжекционных(светоизлучающих) лазеров
К недостаткам излучающих диодов можно отнести сравнительно малую мощность излучения (порядка 10 мВт) и большую спектральную ширину полосы излучения (100-500 А). Этих недостатков лишены инжекционные лазеры. Инжекционным или полупроводниковым лазером называется генератор когерентного во времени и в пространстве рекомбинационного излучения, которое возникает в базе диода при плотности тока, протекающего через р – n переход, превышающей некоторое пороговое значение.
В настоящее время инжекционные лазеры изготавливаются на основе ряда прямозонных полупроводниковых соединений (GaAs, PbTe, PbSe и др.) и твердых растворов, и они перекрывают диапазон длин волн когерентного излучения от 0,9 до 28 мкм. Инжекционные лазеры позволяют получать монохроматическое излучение (ширина спектральной линии 0,1-1 А ) большой мощности. Лазеры такого типа имеют высокие значения КПД преобразования электрической энергии в энергию излучения. КПД может достигать 50-80%.
Кроме того, имеется возможность управления длиной волны излучения лазера за счет изменения тока, протекающего через р - n переход, или изменения температуры теплоотвода, а также с помощью магнитного поля или давления. Все эти достоинства полупроводниковых лазеров открывают широкие перспективы их применения в промышленности и в научных исследованиях. Благодаря малым размерам и возможности высокочастотной модуляции излучаемой мощности полупроводниковый лазер представляет собой один из перспективных источников излучения для волоконно-оптических систем связи.
ИЛ - это лазеры, выполненные на основе светодиодов (p-n переходов). Величина дисперсии определяется полосой излучения. Отличие лазера от светодиода - наличие внешнего стабилизирующего резонатора. В ИЛ обеспечивается преобладание вынужденного излучения над поглощением света за счет резонансного контура — резонатора.
Основные разновидности резонаторов, используемых в ИЛ:
- плоский резонатор (Фабри — Перо) и его простые модификации, включая составные резонаторы и внешние резонаторы. Обычно плоский резонатор образован сколотыми торцами лазерной структуры.
- резонаторы с распределенной обратной связью (РОС-резонатор) и распределенным брэгговским отражателем (РБО-резонатор).
Иногда используют комбинацию резонаторов.
РОС- и РБО-резонаторы основаны на принципе когерентного отражения при дифракции на периодических неоднородностях среды. Распределенные отражатели имеют вид диэлектрического волновода с гофрированной границей, так что периодической неоднородностью служит вариация толщины волновода. РБО- резонатор в отличие от плоского резонатора характеризуется только одним резонансом в полосе усиления, что обеспечивает его более высокую спектральную селективность.
В ИЛ используют пространственную и спектральную селекцию типов колебаний. Пространственная селекция — подавление поперечных типов колебаний и получения одномодового излучения, спектральная — подавление продольных мод и получение «одночастотного» излучения. Оптимизированный излучатель использует оба вида селекции. Одномодовые лазеры, обладающие одночастотным излучением, подразделяют по принципу создания селекции типов колебаний на:
- лазеры с составным резонатором: для лазеров с составным резонатором усиливаются лишь те колебания, которые настроены на резонанс с внутренним типом колебаний основного и одного (или более) дополнительного резонатора.;
- с РОС или РБО : в ИЛ с РОС и РБО гофрированная поверхность волновода играет роль частотно-селективного зеркала.
- с «запертой» инжекцией: структура с «запертой» инжекцией использует внешний источник излучения на одной длине волны.
- с управляемой геометрией: лазеры с управляемой геометрией представляют собой одномодовые приборы с коротким ( 50 мкм) резонатором.
Излучение ИЛ для ВОЛС с большой скоростью передачи данных должно быть одномодовым. Это, кроме наилучшей частотной характеристики и широкой полосы частот, облегчает стыковку источника с волокном.
В
обычных ИЛ с помощью различных
структурных решений можно обеспечить
одномодовую генерацию при относительно
невысоких частотах модуляции. Однако,
если частота модуляции близка к fc
спектр лазерного излучения стремится
к многомодовости или многочастотности,
что вызывает уширение спектра,
характеризуемое динамической шириной
спектральной линии —
.
Величина
существенно возрастает на частотах
более 500 МГц и достигает 5...10 нм. Срок
службы ИЛ составляет в среднем порядка
3*104
ч.
Недостатки ИЛ: низкая температурная стабильность(будет перемещаться резонансная частота). Решили использовать РОС-лазеры.
В ИЛ обеспечивается преобладание вынужденного излучения над поглощением света за счет резонансного контура — резонатора. Основные разновидности резонаторов, используемых в ИЛ — плоский резонатор (Фабри — Перо) и его простые модификации, включая составные резонаторы и внешние резонаторы; резонаторы с распределенной обратной связью (РОС-резонатор) и распределенным брэгговским отражателем (РБО-резонатор). Иногда используют комбинацию резонаторов,
Обычно плоский резонатор образован сколотыми торцами лазерной структуры. РОС- и РБО-резонаторы основаны на принципе когерентного отражения при дифракции на периодических неоднородностях среды. Распределенные отражатели имеют вид диэлектрического волновода с гофрированной границей, так что периодической неоднородностью служит вариация толщины волновода. При этом период модуляции А должен удовлетворять условию Брэгга:
,где
т — порядок брэгговского отражения;
—
эффективный показатель преломления
волновода. РБО-резонатор в отличие от
резонатора Фабри — Перо характеризуется
только одним резонансом в полосе
усиления, что обеспечивает его более
высокую спектральную селективность.
В ИЛ используют пространственную и спектральную селекцию типов колебаний. Пространственная селекция — подавление поперечных типов колебаний и получения одномодового излучения, спектральная — подавление продольных мод и получение «одночастотного» излучения. Оптимизированный излучатель использует оба вида селекции.Одномодовые лазеры, обладающие одночастотным излучением, подразделяют по принципу создания селекции типов колебаний на лазеры с составным резонатором; с РОС или РБО; с «запертой» инжекцяей и с управляемой геометрией.
Для лазеров с составным резонатором усиливаются лишь те колебания, которые настроены на резонанс с внутренним типом колебаний основного и одного (или более) дополнительного резонатора.В ИЛ с РОС и РБО гофрированная поверхность волновода играет роль частотно-селективного зеркала. Структура с «запертой» инжекцией использует внешний источник излучения на одной длиневолны. Лазеры с управляемой геометрией представляют собой одномодовые приборы с коротким ( 50 мкм) резонатором.
Базовой структурой ДГ лазеров является полосковая, характеризующаяся относительно малыми Iпор, возможностью реализации одномодового режима, отсутствием параллельных пространственных каналов генерации. Для придания структуре лазера полосковой конфягурации применяют механические и химические методы, селективное травление, технику фотолитографии, протонную бомбардировку и другие методы.
Излучение ИЛ для ВОЛС с большой скоростью передачи данных должно быть одномодовым. Это, кроме наилучшей частотной характеристики и широкой полосы частот, облегчает стыковку источника е волокном, В обычных ИЛ с помощью различных структурных решений можно обеспечить одномодовую генерацию при относительно невысоких частотах модуляции. Однако, если частота модуляции близка кfc спектр лазерного излучения стремится к многомодо-вости или многочастоткости, что вызывает уширение спектра, характеризуемое динамической шириной спектральной линии — . Величина существенно возрастает на частотах более 500 МГц и достигает 5...10 нм. Срок службы ИЛ составляет в среднем порядка 3*104 ч
