Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
подарок от добрейшей души человека.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
13.59 Mб
Скачать

52.Пристрої узгодження активних елементів з оптичним кабелем.

В СИД, излучающем через боковую поверхность, размер этой по­верхности достаточно велик. При этом лишь малая часть излучения передается волокну. Выходная мощность полупроводникового кристалла и мощность, передаваемая оптическому во­локну, могут существенно различаться.

Модернизация структуры полупроводникового кристалла (использование диодов, излучающих через узкую боковую грань, или лазеров) приводит к улучшению выходной картины излучения, и крайне важным является хороший контакт источника с оптическим волокном

И спользуются источники с микролинзами, приклеенными с помощью эпок­сидного клея непосредственно к кристаллу. Линза фокусирует свет в практи­чески однородное пятно на выходе источника. Обычно размер этого пятна превосходит размер волокна. Волокно может помещаться в любом месте све­тового пятна, принимая при этом одну и ту же оптическую мощность.

Линза может также размещаться на некотором расстоянии от поверхности кристалла и фокусировать свет. Линза на рис. 8.11 является компонентом приемной части источника и служит для подключения соединителя. При этом линза фокусирует свет непосредственно в волокно, закрепленное в корпусе соединителя.

Параболическая форма приемной части источника и линза позволяют коллимировать пучок света, сужая размер излучающего пятна и угловую диа­грамму излучения. При коллимации световые лучи становятся однонаправ­ленными и перестают расходиться.

В устройствах, называемых пигтейлами (pigtail), используется короткий от­резок оптического волокна, В светодиоде Барра волокно клеевым способом за­крепляется непосредственно на полированной поверхности кристалла. Преимущество данного способа заключается в максимальном приближении волокна к поверхности активной среды кристалла. В других устройствах ус­танавливают пигтейл в непосредственной близости от поверхности кристалла. закрепление пигтейла вблизи кристалла позволяет вводить свет в волокно до того, как пучок света успеет расшириться.

Источники очень часто укомплектовываются выходными разъемами в виде приемных частей для разного типа оптических соединителей. К каждому виду распространенных оптических соединителей могут быть подобраны соответствующие приемные части.

53. Характеристики инжекционных(светоизлучающих) лазеров

К недостаткам излучающих диодов можно отнести сравнительно малую мощность излучения (порядка 10 мВт) и большую спектральную ширину полосы излучения (100-500 А). Этих недостатков лишены инжекционные лазеры. Инжекционным или полупроводниковым лазером называется генератор когерентного во времени и в пространстве рекомбинационного излучения, которое возникает в базе диода при плотности тока, протекающего через р – n переход, превышающей некоторое пороговое значение.

В настоящее время инжекционные лазеры изготавливаются на основе ряда прямозонных полупроводниковых соединений (GaAs, PbTe, PbSe и др.) и твердых растворов, и они перекрывают диапазон длин волн когерентного излучения от 0,9 до 28 мкм. Инжекционные лазеры позволяют получать монохроматическое излучение (ширина спектральной линии 0,1-1 А ) большой мощности. Лазеры такого типа имеют высокие значения КПД преобразования электрической энергии в энергию излучения. КПД может достигать 50-80%.

Кроме того, имеется возможность управления длиной волны излучения лазера за счет изменения тока, протекающего через р - n переход, или изменения температуры теплоотвода, а также с помощью магнитного поля или давления. Все эти достоинства полупроводниковых лазеров открывают широкие перспективы их применения в промышленности и в научных исследованиях. Благодаря малым размерам и возможности высокочастотной модуляции излучаемой мощности полупроводниковый лазер представляет собой один из перспективных источников излучения для волоконно-оптических систем связи.

ИЛ - это лазеры, выполненные на основе светодиодов (p-n переходов). Величина дисперсии определяется полосой излучения. Отличие лазера от светодиода - наличие внешнего стабилизирующего резонатора. В ИЛ обеспечивается преобладание вынужденного излучения над поглоще­нием света за счет резонансного контура — резонатора.

Основные разновидности резонаторов, используемых в ИЛ:

- плоский резонатор (Фабри — Пе­ро) и его простые модификации, включая составные резонаторы и внешние резо­наторы. Обычно плоский резонатор образован сколотыми торцами лазерной структуры.

- резонаторы с распределенной обратной связью (РОС-резонатор) и рас­пределенным брэгговским отражателем (РБО-резонатор).

Иногда используют комбинацию резонаторов.

РОС- и РБО-резонаторы основаны на принципе когерентного отражения при дифракции на периодических неоднородностях среды. Распределенные отра­жатели имеют вид диэлектрического волновода с гофрированной границей, так что периодической неоднородностью служит вариация толщины волновода. РБО- резонатор в отличие от плоского резонатора характеризуется только одним резонан­сом в полосе усиления, что обеспечивает его более высокую спектральную селек­тивность.

В ИЛ используют пространственную и спектральную селекцию типов колеба­ний. Пространственная селекция — по­давление поперечных типов колебаний и получения одномодового излучения, спектральная — подавление продоль­ных мод и получение «одночастотного» излучения. Оптимизированный излуча­тель использует оба вида селекции. Одномодовые лазеры, обладающие одночастотным излучением, подразделяют по принципу создания селекции типов колебаний на:

- лазеры с составным резо­натором: для лазеров с составным резонатором усиливаются лишь те колебания, кото­рые настроены на резонанс с внутренним типом колебаний основного и одного (или более) дополнительного резонатора.;

- с РОС или РБО : в ИЛ с РОС и РБО гофрированная поверхность волновода играет роль частотно-селективного зеркала.

- с «запертой» инжекцией: структура с «запертой» инжекцией использует внешний источник излучения на одной длине волны.

- с управляемой геометрией: лазеры с управляемой геометри­ей представляют собой одномодовые приборы с коротким ( 50 мкм) резонатором.

Излучение ИЛ для ВОЛС с большой скоростью передачи данных должно быть одномодовым. Это, кроме наилучшей частотной характеристики и широкой по­лосы частот, облегчает стыковку источ­ника с волокном.

В обычных ИЛ с по­мощью различных структурных реше­ний можно обеспечить одномодовую ге­нерацию при относительно невысоких частотах модуляции. Однако, если часто­та модуляции близка к fc спектр лазер­ного излучения стремится к многомодовости или многочастотности, что вызы­вает уширение спектра, характеризуемое динамической шириной спектральной линии — . Величина существенно возрастает на частотах более 500 МГц и достигает 5...10 нм. Срок службы ИЛ составляет в среднем порядка 3*104 ч.

Недостатки ИЛ: низкая температурная стабильность(будет перемещаться резонансная частота). Решили использовать РОС-лазеры.

В ИЛ обеспечивается преобладание вынужденного излучения над поглоще­нием света за счет резонансного контура — резонатора. Основные разновидности резонаторов, используемых в ИЛ — плоский резонатор (Фабри — Пе­ро) и его простые модификации, включая составные резонаторы и внешние резо­наторы; резонаторы с распределенной обратной связью (РОС-резонатор) и рас­пределенным брэгговским отражателем (РБО-резонатор). Иногда используют комбинацию резонаторов,

Обычно плоский резонатор образован сколотыми торцами лазерной структуры. РОС- и РБО-резонаторы основаны на принципе когерентного отражения при дифракции на периодических неоднородностях среды. Распределенные отра­жатели имеют вид диэлектрического волновода с гофрированной границей, так что периодической неоднородностью служит вариация толщины волновода. При этом период модуляции А должен удовлетворять условию Брэгга:

,где т — порядок брэгговского отраже­ния; — эффективный показатель пре­ломления волновода. РБО-резонатор в отличие от резонатора Фабри — Перо характеризуется только одним резонан­сом в полосе усиления, что обеспечивает его более высокую спектральную селек­тивность.

В ИЛ используют пространственную и спектральную селекцию типов колеба­ний. Пространственная селекция — по­давление поперечных типов колебаний и получения одномодового излучения, спектральная — подавление продоль­ных мод и получение «одночастотного» излучения. Оптимизированный излуча­тель использует оба вида селекции.Одномодовые лазеры, обладающие одночастотным излучением, подразделяют по принципу создания селекции типов колебаний на лазеры с составным резо­натором; с РОС или РБО; с «запертой» инжекцяей и с управляемой геометрией.

Для лазеров с составным резонатором усиливаются лишь те колебания, кото­рые настроены на резонанс с внутренним типом колебаний основного и одного (или более) дополнительного резонатора.В ИЛ с РОС и РБО гофрированная поверхность волновода играет роль частотно-селективного зеркала. Структура с «запертой» инжекцией использует внешний источник излучения на одной длиневолны. Лазеры с управляемой геометри­ей представляют собой одномодовые приборы с коротким ( 50 мкм) резонатором.

Базовой структурой ДГ лазеров является полосковая, характеризующаяся относительно малыми Iпор, возможностью реализации одномодового режима, отсутствием параллельных пространственных каналов генерации. Для придания структуре лазера полосковой конфягурации применяют механические и химические методы, селективное травление, технику фотолитографии, протонную бомбардировку и другие методы.

Излучение ИЛ для ВОЛС с большой скоростью передачи данных должно быть одномодовым. Это, кроме наилучшей частотной характеристики и широкой по­лосы частот, облегчает стыковку источ­ника е волокном, В обычных ИЛ с по­мощью различных структурных реше­ний можно обеспечить одномодовую ге­нерацию при относительно невысоких частотах модуляции. Однако, если часто­та модуляции близка кfc спектр лазер­ного излучения стремится к многомодо-вости или многочастоткости, что вызы­вает уширение спектра, характеризуемое динамической шириной спектральной линии — . Величина существенно возрастает на частотах более 500 МГц и достигает 5...10 нм. Срок службы ИЛ составляет в среднем порядка 3*104 ч