Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
подарок от добрейшей души человека.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
13.59 Mб
Скачать

47. Типові конструкції оптичних кабелів.

Конструкции ОК в основном определяются их назначением. При этом, все многообразие существующих типов кабелей можно подразделять на три группы:

  1. кабели повивной концентрической скрутки (а)

  2. кабели с фигурным сердечником (б)

  3. плоские кабели ленточного типа (в).

1 — волокно; 2— силовой элемент; 3— демпфирующая оболочка; 4—защитная оболочка; 5—профилированный сердечник; 6— ленты с волокнами

Кабели первого типа имеют традиционную повивную концентрическую скрутку сердечника по аналогии с электрическими кабелями. Известны такие кабели преимущественно с числом волокон 7, 12, 19. Чаще всего волокна располагаются в отдельных пластмассовых трубках, образуя модули.

Кабели второй группы имеют в центре фигурный пластмассовый сердечник с пазами, в которых размещаются ОВ. Пазы и соответственно волокна располагаются по геликоиде, и поэтому они не испытывают продольного воздействия на разрыв. Такие кабели могут содержать 4, 6, 8 и 10 волокон.

Кабели ленточного типа состоят из плоских пластмассовых лент, в которые вмонтировано определенное число ОВ. Чаще всего в каждой ленте располагается по 12 волокон, а число лент составляет 6, 8 и 12.

48. Прокладка оптичних кабелів.

При прокладке кабеля в пределах города сооружается кабельная канализация, а в полевых условиях кабель кладется непосредственно в землю на глубину 1,2 м.

Подготовка к строительству: входной контроль кабеля и группирование строительных длин ОК (производится в соединительных муфтах регенерационного участка ВОЛС и заключается в поиске такого варианта соединения волокон в этих муфтах, при котором достигается максимальное ослабление случайных составляющих).

Основные способы прокладки ОК:

Прокладка в грунт :

Бестраншейная прокладка с помощью кабелеукладчика является наиболее распространенным способом и широко применяется на трассах в различных условиях местности. В этом случае ножом кабелеукладчика в грунте прорезается узкая щель и кабель укладывается на ее дно.

Траншейная прокладка: кабель укладывается в заранее отрытую траншею. Ширина траншеи наверху 0,3 м, на дне 0,1 – 0,2 м., глубина 1,2 м. Прокладка кабеля производится с барабанов, установленных на кабельные транспортеры, или автомашины. По мере движения транспорта и вращения барабана кабель разматывается и укладывается непосредственно в траншею или вдоль нее по бровке, а затем в траншею. Засыпка траншеи осуществляется специальными траншее засыпщиками или вручную.

Прокладка кабеля в пластмассовой трубе проводится для чисто диэлектрических ОК без металлических оболочек. Достоинством таких кабелей является стойкость против электромагнитных воздействий, Но они уязвимы против грызунов и менее механически прочны. В этом случае применяются два способа прокладки:

- протяжка ОК через предварительно проложенный в земле пластмассовый трубопровод.

- прокладка ОК, встроенного в пластмассовую трубу в заводских условиях и образующих единое целое.

Прокладка кабеля по проводам высоковольтной линии передачи также проводится для чисто диэлектрических ОК без металлических оболочек. В этом случае ОК навивается на провод высоковольтной линии специальным укладчиком. Этот способ исключает необходимость проведения трудоемких земляных работ. Способ может с успехом использоваться и в городской черте, и за ее пределами, так как оптоволоконный кабель подвешивается на уже существующие опоры линий традиционных коммуникаций. Это могут быть:

- опоры телефонных и телеграфных линий;

- опоры линий электропередач (ЛЭП);

- опоры контактной электросети железных дорог.

Прокладка кабеля в телефонной канализации состоит из двух этапов: подготовительного и собственно прокладки.

Подготовительный этап включает в себя входной контроль кабеля, группирование строительных длин и подготовку канализации.

Прокладка ОК в кабельную канализацию может осуществляться непосредственно в канале или в полиэтиленовых трубах, предварительно затянутых в кабельную канализацию.

Прокладка кабеля по морскому дну. Для укладки кабеля в этом случае используются специально оборудованные судна. Кабель прокладывается за один раз: от берега до берега. Если требуемый для этого кабель не помещается на одном судне, то используют целую эскадру кораблей. Особые проблемы связаны с устранением неисправностей кабеля, проложенного по морскому дну. После того как кабель пролежит на дне не один месяц, его зачастую трудно бывает найти. Особенности донного рельефа и подводные течения могут отнести кабель на десятки километров.

50 Загальні характеристики джерел випромінювання.

Перечислим основные требова­ния, которым должен удовлетворять источник излучения, применяемый в ВОЛС:

• излучение должно вестись на длине волны одного из окон прозрачности волокна. В тра­диционных оптических волокнах существует три окна, в которых достигаются меньшие потери света при распространении: 850, 1300, 1550 нм;

• источник излучения должен выдерживать необходимую частоту модуляции для обеспе­чения передачи информации на требуемой скорости;

• источник излучения должен быть эффективным, в том смысле, что большая часть излу­чения источника попадала в волокно с минимальными потерями;

• источник излучения должен иметь достаточно большую мощность, чтобы сигнал можно было передавать на большие расстояния, но и не на столько, чтобы излучение приводи­ло к нелинейным эффектам или могло повредить волокно или оптический приемник;

• температурные вариации не должны сказываться на функционировании источника излу­чения;

• стоимость производства источника излучения должна быть относительно невысокой. Два основных типа источников излучения, удовлетворяющие перечисленным требовани­ям, используются в настоящее время - светодиоды (LED) и полупроводниковые лазерные диоды (LD).

Также важными характеристиками источников излучения являются: быстродействие ис­точника излучения; деградация и время наработки на отказ.

Быстродействие источника излучения. Экспериментально измеряемым параметром, от­ражающим быстродействие источника излучения, является максимальная частота модуляции. Предварительно устанавливаются пороги на уровне 0,1 и 0,9 от установившегося значения мощности светового излучения при низкочастотной модуляции прямоугольными импульсами тока. По мере роста частоты модуляции, т.е. при переходе на меньшие масштабы по временной шкале, форма световых фронтов становится более пологой. Для описания фронтов вво­дят времена нарастания и спада мощности излучения, определяемые как временные интервалы, за которые происходит нарастание от 0,1 до 0,9 и, наоборот, спад светового сиг­нала от 0,9 до 0,1. Максимальная частота модуляции определяется как частота входных электрических импульсов, при которой выходной оптический сигнал перестает пересекать поро­говые значения 0,1 и 0,9, оставаясь при этом во внутренней области. Для светодиодов эта частота может достигать до 200 МГц, а у лазерных диодов - значительно больше (несколько ГГц). Времена нарастания и спада предоставляют информацию о полосе пропускания W.

Деградация и время наработки на отказ. По мере эксплуатации оптического передатчи­ка его характеристики постепенно ухудшаются - падает мощность излучения, и, в конце кон­цов, он выходит из строя. Это связано с деградацией полупроводникового слоя. Надежность полупроводникового излучателя определяется средней наработкой на отказ или интенсивно­стью отказов. Лазерные диоды, выпускаемые десять лет назад, обладали значительно мень­шей надежностью по сравнению со светодиодами. Однако в настоящее время, благодаря со­вершенствованию конструкций и технологии изготовления, удалось значительно повысить на­дежность лазерных диодов и приблизить их к светодиодам по времени наработки на отказ, которое составляет до 50000 часов и более (5-8 лет).