Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4. Базовые технологии локальных сетей.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
575.49 Кб
Скачать

3.3.3 Мониторинг системы

Все компьютеры в среде FDDI отвечают за мониторинг передачи маркера. Чтобы изолировать серьезные сбои в кольце, используется метод, который называется "испускание маяка" ("beaconing") (рис. ниже). Суть метода заключается в следующем:

  1. Компьютер, обнаруживший сбой, посылает в сеть сигнал, который получил название "маяк".

  2. Он посылает его до тех пор, пока не примет маяк предшествующего ему компьютера в кольце.

  3. Процесс продолжается до тех пор, пока в кольце не останется только один компьютер, испускающий маяк (т.е. тот, который находится за неисправным).

  4. Когда компьютер примет свой собственный маяк, он "понимает", что неисправность устранена, восстанавливает маркер кольца и сеть возвращается к нормальной работе.

Рассмотрим пример (рис. ниже) функционирования FDDI при сбое в работе одного из компьютеров сети. Предположим, что произошел сбой в работе компьютера 1.

Мониторинг передачи маркера

  • Компьютер 1 отказал. Компьютер 3 обнаружил сбой, изъял из кольца маркер (обозначен символом "м" на рисунке) и посылает маяк (обозначен символом "с" на рисунке). Он будет посылать маяк до тех пор, пока не примет свой сигнал или маяк от компьютера 2 (рис. а).

  • Компьютер 2, не получив нормального маркерного сообщения, обнаруживает сбой и посылает новый сигнал - свой маяк - в сеть. Компьютер 3, получив маяк от компьютера 2, прекращает передавать свой маяк (рис. б).

  • Так как компьютер 1 неисправен, то компьютер 2 продолжает посылать маяк. Этот сигнал указывает на то, что сбой произошел на компьютере 1 (рис. в).

  • Если компьютер 1 восстановил свою работоспособность или отключен от сети, компьютер 2 принимает свой собственный маяк, что приводить к восстановлению работы сети (рис. г).

3.3.4 Области применения fddi

  1. FDDI обеспечивает высокоскоростную связь между сетями различных типов и может применяться в сетях городского масштаба.

  2. Используется для соединения больших или мини-компьютеров в традиционных компьютерных залах, обслуживая очень интенсивную передачу файлов.

  3. Выступает в качестве магистральных сетей, к которым подключаются ЛВС малой производительности. Подключать все оборудование фирмы к одной ЛВС - не самое мудрое решение. Это может перегрузить сеть, а сбой какого-либо компонента - остановить работу всей фирмы.

  4. Локальные сети, где нужна высокая скорость передачи данных. Это сети, состоящие из инженерных РС и компьютеров, где ведется видеообработка, работают системы автоматизированного проектирования, управления производством.

  5. Любое учреждение, нуждающееся в высокоскоростной обработке. Даже в офисах коммерческих фирм производство графики или мультимедиа для презентаций и других документов нередко вызывает перегрузку сети.

1.5.4. Сравнение технологий и определение конфигурации

На данной страничке представлены сравнительные характеристики наиболее распространенных технологий ЛВС.

Характеристики

FDDI

Ethernet

Token Ring

ArcNet

Скорость передачи

100 Мбит/с

10 (100) Мбит/с

16 Мбит/с

2,5 Мбит/с

Топология

кольцо

шина

кольцо/звезда

шина, звезда

Среда передачи

оптоволокно, витая пара

коаксиальный кабель, витая пара, оптоволокно

витая пара, оптоволокно

коаксиальный кабель, витая пара, оптоволокно

Метод доступа

маркер

CSMA/CD

маркер

маркер

Максимальная протяженность сети

100 км

2500 м

4000 м

6000 м

Максимальное количество узлов

500

1024

260

255

Максимальное расстояние между узлами

2 км

2500 м

100 м

600 м