
- •Лекция-3 основы численных методов
- •§ 2.3. Итерационные методы решения систем линейных
- •Алгебраических уравнений
- •2.3.1. Понятие об итерационных методах решения слау.
- •2.3.2. Метод Зейделя и метод простой итерации.
- •2.3.3. Матричная формулировка метода простой итерации и метода Зейделя.
- •2.3.4. Пример решения слау итерационными методами.
- •2.3.5. Пример программы (лабораторная работа 3).
Лекция-3 основы численных методов
§ 2.3. Итерационные методы решения систем линейных
Алгебраических уравнений
2.3.1. Понятие об итерационных методах решения слау.
В отличие от прямых методов, итерационные методы обычно не дают точного ответа за конечное число шагов, однако на каждом шаге уменьшают ошибку на какую-то долю. Итерации прекращают, когда ошибка становится меньше допуска, заданного вычислителем (пользователем). Величина финальной ошибки зависит от количества итераций, а также от свойств метода и СЛАУ. Другими словам, итерационные методы дают решение СЛАУ в виде предела последовательности некоторых векторов, построение которых осуществляется посредством единообразного процесса, называемого итерационным процессом.
Рассмотрим два простейших итерационных метода решения СЛАУ – метод простой итерации и метод Зейделя.
Пусть требуется решить СЛАУ
(2.3.1)
Итерационные методы решения системы уравнений (2.3.1) состоят в построении последовательности векторов
(2.3.2)
по некоторому алгоритму, такому, что из
следует
.
При этом
(2.3.3)
где
– точное решение системы, а
–
называется начальным приближением
решения.
Вычисления ведутся до тех пор, пока норма разницы двух последовательных приближений не станет
,
(2.3.4)
где – малое положительное число (заданная точность). С точностью до решение принимается равным .
2.3.2. Метод Зейделя и метод простой итерации.
Пусть задана система уравнений:
.
(2.3.5)
Выразим
через остальные члены i-го
уравнения:
.
(2.3.6)
Полученная запись СЛАУ приводит к двум итерационным процессам.
Метод простой итерации.
,
.
(2.3.7)
Метод Зейделя.
,
(2.3.8)
При этом
задается (
),
– номер итерации.
Процесс ведется до выполнения условия
.
Норму
вектора
можно, в частности, вычислять по формулам:
– норма по модулю;
– «евклидова» норма;
– максимум модуля для элементов вектора.
Разница методов состоит в том, что в
методе простой итерации новые значения
учитываются лишь после вычисления их
для всех
,
а в методе Зейделя они учитываются сразу
же после вычисления их для каждого
.
При решении итерационными методами встает вопрос сходимости получаемых приближений к решению задачи.
Достаточный признак сходимости обоих методов состоит в выполнении условия диагонального преобладания:
,
,
(2.3.9)
где, по крайней мере, одно неравенство
является строгим (
).
2.3.3. Матричная формулировка метода простой итерации и метода Зейделя.
Представим матрицу
в виде
,
(2.3.10)
где
– нижняя треугольная матрица:
;
(2.3.11)
– верхняя треугольная матрица:
;
(2.3.12)
– диагональная матрица:
;
(2.3.13)
– сумма верхней и нижней треугольных
матриц:
.
(2.3.14)
Тогда простая итерация имеет вид
(2.3.15)
или
(2.3.16)
Аналогично можно представить метод Зейделя в виде
(2.3.17)
или
,
где
–
нижняя треугольная матрица с главной
диагональю:
;
(2.3.18)
из этого следует
,
(2.3.19)
или
,
(2.3.20)