Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭкзБилеты.doc
Скачиваний:
11
Добавлен:
01.03.2025
Размер:
366.59 Кб
Скачать

Сургутский профессиональный колледж

Одобрено на заседании

цикловой комиссии.

Руководитель цикловой комиссии

________________________

подпись

В.С. Кельданович

ф.и.о.

«06 » мая 2010 г.

Экзаменационный билет № 9

по предмету

«Компьютерные сети»

Утверждаю:

Зам. директора по

теоретическому обучению

________________________

подпись

З. А. Дузь

« 06 » мая 2010 г.

  1. Стек протоколов TCP/IP.

  2. Каналы телекоммуникаций: кабельные(на основе медной проволоки), оптоволоконные, беспроводные.

  3. Дано: 3 удалённых сегмента локальной сети с уникальной IP адресацией, сегменты находятся в разных IP подсетях. Задача: Используя два маршрутизатора настроить корректную маршрутизацию пакетов между всеми участниками сети. (эмуляция на ПО Cisco PacketTracer)

Преподаватель К. В.Кригер

1. Стек протоколов TCP/IP (англ. Transmission Control Protocol/Internet Protocol) — набор сетевых протоколов разных уровней модели сетевого взаимодействия DOD, используемых в сетях. Протоколы работают друг с другом в стеке (англ. stack, стопка) — это означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP.

Стек протоколов TCP/IP основан на модели сетевого взаимодействия DOD и включает в себя протоколы четырёх уровней:

прикладного (application),

транспортного (transport),

сетевого (internet),

уровня доступа к среде (network access).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

2. Кабельные каналы для целей телекоммуникаций исторически использовались первыми, основную долю этих каналов составляют телефонные медные кабели, которые содержат десятки или даже сотни витых пар проводов. Полоса пропускания таких кабелей обычно составляет 3-3.5 кГц при длине 2-10 км. Эта полоса диктовалась ранее нуждами аналогового голосового обмена в рамках коммутируемой телефонной сети. С учетом возрастающих требований к широкополосности каналов витые пары проводов стали заменять коаксиальными кабелями, которые имеют полосу от 100 до 500 МГц (до 1 Гбит/с), и полыми волноводами. Именно коаксиальные кабели стали вначале транспортной средой локальных сетей ЭВМ

Оптоволоконные линии

Наиболее дорогими являются оптические проводники, называемые также оптоволоконным кабелем. Разработка стекловолокон с низким коэффициентом поглощения в инфракрасном диапазоне (менее 0.2 дБ/км) сделала возможным широкое распространение этих типов каналов связи. Пластиковые волокна применяются при длинах соединений не более 100 м и при ограниченном быстродействии (менее 50 МГц).

Данные передаются с помощью световых импульсов, проходящих по оптическому волокну. Внешнее воздействие помех практически отсутствует. Они обеспечивают защиту данных, так как техника ответвлений в оптоволоконных кабелях очень сложна. Вероятность ошибки при передаче по оптическому волокну составляет менее 10-10, что во многих случаях делает ненужным контроль целостности сообщений. Допустимое удаление более 50 км.

Оптоволоконные линии связи работают в частотном диапазоне 1013-1016 Гц, что на 6 порядков больше, чем в случае радиочастотных каналов (теоретическая пропускная способность 50 000 Гбит/с). В настоящее время оптоволоконный кабель поддерживает скорость передачи данных (в виде пакетов) 10.100 или 1000 Мбит/с. Это связано с ограниченным быстродействием оборудования, преобразующего оптический сигнал в электрический и обратно.

При построении сетей используются многожильные кабели (существуют и другие разновидности кабеля: например, двух- или четырехжильные, а также плоские). Свет (длина волны от 1350 до 1500 нм) вводится в оптоволокно (диаметром менее 100 мкм) с помощью светоизлучающего диода или полупроводникового лазера. Центральное волокно покрывается слоем (клэдинг), коэффициент преломления которого меньше, чем у центрального ядра (стрелками условно показан ход лучей света в волокне). Для обеспечения механической прочности извне волокно покрывается полимерным слоем. Кабель может содержать много волокон, например 8. В центре кабеля помещается стальной трос, который используется при прокладке кабеля. С внешней стороны кабель защищается стальной оплеткой и герметизируется эластичным полимерным покрытием.

Беспроводные каналы

Применение электромагнитных волн для телекоммуникаций имеет более чем столетнюю историю. Если не используется направленная антенна и на пути нет препятствий, радиоволны распространяются по всем направлениям равномерно и сигнал уменьшается обратно пропорционально квадрату расстояния между передатчиком и приемником (удвоение расстояния приводит к потерям 6 дБ). Радиоканалы для целей передачи информации используют частотные диапазоны 902-928 МГц (расстояния до 10 км, пропускная способность до 64 Кбит/с), 2.4 ГГц и 12 ГГц (до 50 км, до 8 Мбит/с). Они используются там, где нет кабельных или оптоволоконных каналов или их создание по каким-то причинам невозможно или слишком дорого. Более низкие частоты (например, 300 МГц) мало привлекательны из-за ограничений пропускной способности, а большие частоты (более 30 ГГц) работоспособны для расстояний не более 5 км из-за поглощения радиоволн в атмосфере.

При использовании диапазонов 4.5 и 6 следует иметь в виду, что любые препятствия на пути волн приведут к их практически полному поглощению. Для этих диапазонов заметное влияние оказывает и поглощение в атмосфере. Заметную роль в поглощении радиоволн играет вода. По этой причине сильный дождь, град или снег могут привести к прерыванию связи. Поглощение в атмосфере ограничивает использование частот более 30 ГГц. Атмосферные шумы, связанные в основном с грозовыми разрядами, доминируют при низких частотах вплоть до 2 МГц. Галактический шум, приходящий из-за пределов Солнечной системы, дает существенный вклад вплоть до 200 ГГц.

Мощность передатчика обычно лежит в диапазоне 50 мВт - 2 Вт. Для устройств на частоты 2.4 ГГц и выше, как правило, используются направленные антенны и необходима прямая видимость между приемником и передатчиком. На аппаратном уровне здесь могут использоваться радиорелейное оборудование, радиомодемы или радиобриджи.

Схемы этих устройств имеют много общего, отличаются они лишь сетевым интерфейсом. Антенна служит как для приема, так и для передачи. Трансивер (приемопередатчик) может соединяться с антенной через специальные усилители. Между трансивером и модемом может включаться преобразователь частот. Модемы подключаются к локальной сети через последовательные интерфейсы типа RS-232 или V. 35 (RS-249), для многих из них такие интерфейсы являются встроенными. Длина кабеля от модема до трансивера лежит в пределах 30-70 м, а соединительный кабель между модемом и ЭВМ может иметь длину 100-150 метров. Трансивер располагается обычно рядом с антенной.