Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекцій теор.ймов.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
6.2 Mб
Скачать

Задачі до розділу 2.3

Задача 2.3.1

На складі зберігається продукція з трьох партій, відомо, що з I партії 90% продукції відповідає стандарту, з II партії – 80%, з III партії – 85%. З кожної партії обрано по одиниці продукції. Знайти ймовірність того, що всі три одиниці стандартні.

Рішення

Розглянемо події:

А – продукція I партії стандартна;

В – продукція II партії стандартна;

С – продукція III партії стандартна.

Обрання стандартної продукції з I, II, III партій є подіями незалежними, причому такими, що відбуваються одночасно. Тому застосуємо теорему множення ймовірностей незалежних подій.

Р(А) =0,9

Р(В) =0,8

Р(С) =0,85

Задача 2.3.2

Два біатлоністи стріляють по мішенях. Ймовірність влучення для першого біатлоніста 0.85, а для другого - 0.9. Знайти ймовірність того, що влучить у мішень тільки один біатлоніст.

Рішення

Подія А – влучить у мішень тільки один біатлоніст.

Подія А відбудеться у випадку: влучить в мішень тільки перший біатлоніст, а другий не влучить; або у випадку: влучить в мішень другий біатлоніст, а перший не влучить.

Позначимо події:

подія В –перший біатлоніст влучить у мішень;

подія С –другий біатлоніст влучить у мішень

і протилежні їм події:

- перший біатлоніст не влучить у мішень;

- другий біатлоніст не влучить у мішень.

Тоді за допомогою теорем додавання й множення ймовірностей отримаємо:

Р(А)=Р(В) + Р(С) ,

де Р(В)=0,85, Р(С)=0,9 , а протилежні їм події мають ймовірності

= 1 - Р(В) = 1 – 0,85 = 0,15;

= 1 – Р(С) = 1 – 0,9 = 0,1.

Р(А)=

Задача 2.3.3

Відділ технічного контролю перевіряє вироби на стандартність. Ймовірність того, що вироб стандартний 0.75. Знайти ймовірність того, що з трьох перевірених виробів тільки один стандартний.

Задача 2.3.4

Студент розшукує потрібне йому питання в трьох підручниках. Ймовірність того, що питання міститься в першому підручнику 0,4; в другому підручнику 0,7, а в третьому підручнику 0,75. Знайти ймовірність того, що питання міститься у всіх трьох підручниках.

Задача 2.3.5

Кинуто три гральних кубики. Знайти ймовірність того, що на верхніх гранях всіх кубиків випаде число 3.

Розділ 2.4. Теорема додавання ймовірностей сумісних подій

Означення: Дві події називаються сумісними , якщо поява однієї з них не виключає появи іншої в одному й тому ж випробуванні.

Наприклад, подія “поява трьох очок при киданні грального кубика” і подія “поява непарного числа очок при киданні грального кубика” є сумісними.

Теорема: Ймовірність появи однієї з двох сумісних подій дорівнює сумі ймовірностей цих подій без ймовірності їх сумісної появи

. (2.7)

Доведення

Оскільки події А і В – сумісні, тоді подія А+В відбудеться, якщо відбудеться одна з трьох несумісних подій: .

.

Подія А відбудеться, якщо відбудеться одна з подій . За теоремою додавання:

Аналогічно:

Звідси:

.

При використанні одержаної формули треба мати на увазі, що події А і В можуть бути як залежними, так і незалежними, тому формула (2.7) набуде вигляду

для незалежних подій: ; (2.8)

для залежних подій: . (2.9)

Наприклад:

Ймовірність одержання сертифікату якості для першого і другого виду виробів відповідно дорівнює =0,7 і =0,8. Знайти ймовірність одержання сертифікату якості хоча б одним виробом підприємства.

Рішення

Подія А – перший вироб одержить сертифікат якості.

Подія В – другий вироб одержить сертифікат якості.

Події А і В незалежні (одержання сертифікату якості першим виробом не залежить від одержання сертифікату другим).

Подія А+В – хоча б один вироб підприємства одержав сертифікат якості, тобто або перший (А), або другий (В), або обидва вироби (АВ), тоді за формулою (2.7)

= 0,7+0,8 - 0,7·0,8=0,94.