- •Теорія ймовірностей і математична статистика для економістів
- •Розділ 1.1. Види подій
- •Види випадкових подій
- •Розділ 1.2. Класичне означення ймовірності появи події
- •Рішення
- •Властивості ймовірності
- •Задачі до розділу 1.2
- •Розділ 1.3. Елементи комбінаторики
- •Розміщення
- •Рішення
- •Перестановки
- •Рішення
- •Рішення
- •Сполучення
- •Рішення
- •Розділ 1.4. Знаходження ймовірності появи події з застосуванням елементів комбінаторики
- •Рішення
- •Задачі до розділу 1.4
- •Розділ 1.5. Статистична ймовірність
- •Розділ 2.1. Теорема додавання ймовірностей несумісних подій
- •Рішення
- •Рішення
- •Задачі до розділу 2.1
- •Розділ 2.2. Ймовірність повної групи подій. Протилежні події
- •Розділ 2.3. Множення ймовірностей
- •Умовна ймовірність
- •Задачі до розділу 2.3
- •Розділ 2.4. Теорема додавання ймовірностей сумісних подій
- •Розділ 2.5. Завдання до заняття 2
- •Розділ 3.1. Ймовірність появи хоча б однієї події
- •Задачі до розділу 3.1
- •Розділ 3.2. Формула повної ймовірності
- •Задачі до розділу 3.2
- •Розділ 3.3. Ймовірність гіпотез. Формули Бейєса
- •Рішення
- •Задачі до розділу 3.3
- •Розділ 3.4. Завдання до заняття 3
- •Розділ 4.1. Формула Бернуллі
- •Рішення
- •Задачі до розділу 4.1
- •Розділ 4.2. Локальна теорема Лапласа
- •Рішення
- •Задачі до розділу 4.2
- •Розділ 4.3. Завдання до заняття 4 Теоретичні питання до заняття 4
- •Розділ 5.1. Інтегральна теорема Лапласа
- •Задачі до розділу 5.1 Задача 5.1.1
- •Розділ 5.2. Формула Пуассона
- •Задачі до розділу5.2
- •Розділ 5.3. Завдання до заняття 5 Теоретичні питання до заняття 5
- •Розділ 6.1. Дискретні і неперервні випадкові величини
- •Розділ 6.2. Закон розподілу дискретної випадкової величини
- •Задачі до розділу 6.2
- •Розділ 6.3. Математичне сподівання дискретної випадкової величини та її властивості
- •Задачі до розділу 6.3
- •Розділ 6.4. Завдання до заняття 6
- •Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини
- •Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення
- •Задачі до розділу 7.2
- •Розділ 7.3. Завдання до заняття 7
- •Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
- •Задачі до розділу 8.1
- •Розділ 8.2. Диференціальна функція розподілу та її властивості
- •Задачі до розділу 8.2
- •Розділ 8.3. Завдання до заняття 8
- •Розділ 9.1. Математичне сподівання неперервної випадкової величини
- •Задачі до розділу 9.1
- •Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини
- •Задачі до розділу 9.2
- •Розділ 9.3. Завдання до заняття 9
- •Розділ 10.1. Закони розподілу дискретних випадкових величин Біноміальний закон розподілу
- •Геометричний розподіл.
- •Задачі до розділу 10.1
- •Розділ 10.2. Закони розподілу неперервних випадкових величин Закон рівномірного розподілу ймовірностей.
- •Числові характеристики рівномірного розподілу
- •Нормальний розподіл (розподіл Гауса)
- •Задачі до розділу 10.2
- •Розділ 10.3. Завдання до заняття 10
- •Розділ 11.1. Предмет і задачі математичної статистики
- •Розділ 11.2. Емпірична функція розподілу
- •Властивості емпіричної функції
- •11.3. Графічна інтерпретація статистичного ряду
- •Розділ 11.4. Завдання до заняття 11
- •Розділ 12.1. Генеральна та вибіркова середні. Властивості середньої
- •Рішення
- •Властивості середньої
- •Розділ 12.2. Генеральна і вибіркова дисперсії та середнє квадратичне відхилення
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Розділ 12.4. Завдання до заняття 12
- •Розділ 13.1. Коефіцієнт варіації
- •Рішення
- •Для знаходження середнього квадрата ознаки складемо таблицю
- •Розділ 13.2. Медіана варіаційного ряду
- •Розділ 13.3. Мода варіаційного ряду
- •Розділ 13.4. Асиметрія і ексцес
- •Моменти варіаційного ряду
- •Асиметрія і ексцес
- •Розділ 13.5. Завдання до заняття 13
- •Розділ 14.1. Метод добутків для обчислення вибіркової середньої і дисперсії
- •Розділ 14.2. Властивості статистичних оцінок параметрів розподілу. Оцінка генеральної дисперсії по виправленій вибірковій
- •Розділ 14.3. Точність оцінки. Довірча ймовірність. Довірчий інтервал
- •Задачі до розділу14.3
- •Розділ 14.4. Завдання до заняття 14
- •Розділ 15.1. Статистична гіпотеза (основні поняття)
- •Розділ 15.2. Критична область. Область приняття нульової гіпотези. Критична точка
- •Відшукування правосторонньої критичної області
- •Відшукування лівосторонньої критичної області
- •Відшукування двосторонньої критичної області
- •Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей
- •Задачі до розділу 15.3
- •Розділ 15.4. Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона)
- •Методика обчислення теоретичних частот нормального розподілу
- •Розділ 15.5. Завдання до заняття 15
- •Розділ 1.6. Поняття кореляції
- •Розділ 16.2. Метод найменших квадратів (загальні поняття)
- •Розділ 16.3. Побудова рівняння лінійної функції
- •Розділ 16.4. Побудова рівняння квадратичної функції
- •Розділ 16.5. Побудова рівняння гіперболічної функції
- •Розділ 16.6. Побудова рівняння показникової функції
- •Розділ 16.7.Знаходження параметрів множинної лінійної залежності
- •Розділ 17.1. Кореляційна таблиця
- •Розділ 17.2. Відшукування параметрів вибіркового рівняння прямої лінії регресії по згрупованим даним
- •Розділ 17.3. Вибірковий коефіцієнт кореляції
- •Розділ 17.4. Завдання до заняття 17
- •Рекомендована література
- •Додатки
- •Значення функції
- •Значення функції
- •Розподіл Пірсона ( - Пірсона)
- •Основні поняття і терміни
- •Основні теореми і формули Класичне означення ймовірності появи події: .
- •Перестановки: . Сполучення: .
Рекомендована література
1. Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. – Изд. 7-е, стер. – М.: Высш. шк., 2001. – 479 с.: ил. 2.
2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике Учеб. пособие для вузов. – Изд. 5-е, стер. – М.: Высш. шк., 2001. – 400 с.: ил.
3. Лавринчук В.П. та інш. Теорія ймовірностей та елементи математичної статистики / Навч. посібник. Чернівці: 1988. – 176 с.
4. Рудавський Ю.К., Костробій П.П., Олексів І.Я. та ін. Збірник задач з теорії ймовірностей / Навч. посібник. Львів: Львівська політтехніка. – 2000. – 242 с.
5. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании / Учебник. – 4-е изд., испр. – М.: Дело, 2003. – 688 с.
6. В.В. Липовик, О.В. Максимов, Л.В. Коломойцева Теорія ймовірностей / підручник – Кривий Ріг: Видавничий дім, 2004 – 247 с.
7. И. Маринеску, Ч. Мойнягу, Р. Никулеску, Н. Ранку В. Урсяну Основы математической статистики и ее приложение. – М.: Статистика, 1970. – 223 с.
8. Вентцель Е.С. Теория вероятностей. – М.: Наука, - 1969. – 112 с.
9. Кремер Н.Ш. Теория вероятностей и математическая статистика/ Учебник для вузов. – М.: ЮНИТИ-ДАНА, 2003. – 543 с.
10. Колмогоров А.Н., Журбенко И.Г., Прохоров А.В. Введение в теорию вероятностей. М.: Наука, 1982. – 160 с.
11. Лихолетов И.И. Высшая математика, теория вероятностей и математическая статистика. Минск: В. школа, 1976. – 720 с.
12. Маркович Э.С. Курс высшей математики с элементами теории вероятностей и математической статистики. М.: Высшая школа, 1972. – 480 с.
13. Колде Я.К. Практикум по теории вероятностей и математической статике. – М.: Наука, 1991. – 157 с.
14. Пугачев В.С. Теория вероятностей и математическая статистика. – М.: Наука, 1979. – 496 с.
15. Гусак А.А. Высшая математика. В 2-х т. Т. 2.: Учебник для студентов вузов. – 3-е изд., стереотип. – Мн.: ТетраСистемс, 2001. – 448 с.
16. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2-х ч. Ч. II: Учебн. пособие для втузов. – 5-е изд., испр. – М.: Высш. шк., 1999. – 416 с.: ил.
17. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учебное пособие. – М.: Наука, 1987. – 6000 с.
18. Беляев Б.И., Тавзадзе М.Н. Теория погрешностей и способ найменьших квадратов. – М.: Недра, 1992. – 286 с.
19. Ф. Мостеллер. Пятьдесят занимательных вероятностных задач с решениями. – 2-е изд., исправл. – М.: Наука, 1975. – 112 с.
20. Вирченко Н.А. Математика в афоризмах, цитатах, высказываниях. – К.: Вища школа, 1983. – 278 с.
21. Г. Вилейтнер История математики от Декарта до середины XIX столетия. – 2-е изд. – М.: Наука, 1966. – 508 с.
22. Гришин А.Ф., Кочерова Е.В. Статистические модели: построение, оценка, анализ: Учеб. пособие. – М.: Финансы и статистика, 2005. – 416 с.: ил.
