- •Теорія ймовірностей і математична статистика для економістів
- •Розділ 1.1. Види подій
- •Види випадкових подій
- •Розділ 1.2. Класичне означення ймовірності появи події
- •Рішення
- •Властивості ймовірності
- •Задачі до розділу 1.2
- •Розділ 1.3. Елементи комбінаторики
- •Розміщення
- •Рішення
- •Перестановки
- •Рішення
- •Рішення
- •Сполучення
- •Рішення
- •Розділ 1.4. Знаходження ймовірності появи події з застосуванням елементів комбінаторики
- •Рішення
- •Задачі до розділу 1.4
- •Розділ 1.5. Статистична ймовірність
- •Розділ 2.1. Теорема додавання ймовірностей несумісних подій
- •Рішення
- •Рішення
- •Задачі до розділу 2.1
- •Розділ 2.2. Ймовірність повної групи подій. Протилежні події
- •Розділ 2.3. Множення ймовірностей
- •Умовна ймовірність
- •Задачі до розділу 2.3
- •Розділ 2.4. Теорема додавання ймовірностей сумісних подій
- •Розділ 2.5. Завдання до заняття 2
- •Розділ 3.1. Ймовірність появи хоча б однієї події
- •Задачі до розділу 3.1
- •Розділ 3.2. Формула повної ймовірності
- •Задачі до розділу 3.2
- •Розділ 3.3. Ймовірність гіпотез. Формули Бейєса
- •Рішення
- •Задачі до розділу 3.3
- •Розділ 3.4. Завдання до заняття 3
- •Розділ 4.1. Формула Бернуллі
- •Рішення
- •Задачі до розділу 4.1
- •Розділ 4.2. Локальна теорема Лапласа
- •Рішення
- •Задачі до розділу 4.2
- •Розділ 4.3. Завдання до заняття 4 Теоретичні питання до заняття 4
- •Розділ 5.1. Інтегральна теорема Лапласа
- •Задачі до розділу 5.1 Задача 5.1.1
- •Розділ 5.2. Формула Пуассона
- •Задачі до розділу5.2
- •Розділ 5.3. Завдання до заняття 5 Теоретичні питання до заняття 5
- •Розділ 6.1. Дискретні і неперервні випадкові величини
- •Розділ 6.2. Закон розподілу дискретної випадкової величини
- •Задачі до розділу 6.2
- •Розділ 6.3. Математичне сподівання дискретної випадкової величини та її властивості
- •Задачі до розділу 6.3
- •Розділ 6.4. Завдання до заняття 6
- •Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини
- •Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення
- •Задачі до розділу 7.2
- •Розділ 7.3. Завдання до заняття 7
- •Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
- •Задачі до розділу 8.1
- •Розділ 8.2. Диференціальна функція розподілу та її властивості
- •Задачі до розділу 8.2
- •Розділ 8.3. Завдання до заняття 8
- •Розділ 9.1. Математичне сподівання неперервної випадкової величини
- •Задачі до розділу 9.1
- •Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини
- •Задачі до розділу 9.2
- •Розділ 9.3. Завдання до заняття 9
- •Розділ 10.1. Закони розподілу дискретних випадкових величин Біноміальний закон розподілу
- •Геометричний розподіл.
- •Задачі до розділу 10.1
- •Розділ 10.2. Закони розподілу неперервних випадкових величин Закон рівномірного розподілу ймовірностей.
- •Числові характеристики рівномірного розподілу
- •Нормальний розподіл (розподіл Гауса)
- •Задачі до розділу 10.2
- •Розділ 10.3. Завдання до заняття 10
- •Розділ 11.1. Предмет і задачі математичної статистики
- •Розділ 11.2. Емпірична функція розподілу
- •Властивості емпіричної функції
- •11.3. Графічна інтерпретація статистичного ряду
- •Розділ 11.4. Завдання до заняття 11
- •Розділ 12.1. Генеральна та вибіркова середні. Властивості середньої
- •Рішення
- •Властивості середньої
- •Розділ 12.2. Генеральна і вибіркова дисперсії та середнє квадратичне відхилення
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Розділ 12.4. Завдання до заняття 12
- •Розділ 13.1. Коефіцієнт варіації
- •Рішення
- •Для знаходження середнього квадрата ознаки складемо таблицю
- •Розділ 13.2. Медіана варіаційного ряду
- •Розділ 13.3. Мода варіаційного ряду
- •Розділ 13.4. Асиметрія і ексцес
- •Моменти варіаційного ряду
- •Асиметрія і ексцес
- •Розділ 13.5. Завдання до заняття 13
- •Розділ 14.1. Метод добутків для обчислення вибіркової середньої і дисперсії
- •Розділ 14.2. Властивості статистичних оцінок параметрів розподілу. Оцінка генеральної дисперсії по виправленій вибірковій
- •Розділ 14.3. Точність оцінки. Довірча ймовірність. Довірчий інтервал
- •Задачі до розділу14.3
- •Розділ 14.4. Завдання до заняття 14
- •Розділ 15.1. Статистична гіпотеза (основні поняття)
- •Розділ 15.2. Критична область. Область приняття нульової гіпотези. Критична точка
- •Відшукування правосторонньої критичної області
- •Відшукування лівосторонньої критичної області
- •Відшукування двосторонньої критичної області
- •Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей
- •Задачі до розділу 15.3
- •Розділ 15.4. Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона)
- •Методика обчислення теоретичних частот нормального розподілу
- •Розділ 15.5. Завдання до заняття 15
- •Розділ 1.6. Поняття кореляції
- •Розділ 16.2. Метод найменших квадратів (загальні поняття)
- •Розділ 16.3. Побудова рівняння лінійної функції
- •Розділ 16.4. Побудова рівняння квадратичної функції
- •Розділ 16.5. Побудова рівняння гіперболічної функції
- •Розділ 16.6. Побудова рівняння показникової функції
- •Розділ 16.7.Знаходження параметрів множинної лінійної залежності
- •Розділ 17.1. Кореляційна таблиця
- •Розділ 17.2. Відшукування параметрів вибіркового рівняння прямої лінії регресії по згрупованим даним
- •Розділ 17.3. Вибірковий коефіцієнт кореляції
- •Розділ 17.4. Завдання до заняття 17
- •Рекомендована література
- •Додатки
- •Значення функції
- •Значення функції
- •Розподіл Пірсона ( - Пірсона)
- •Основні поняття і терміни
- •Основні теореми і формули Класичне означення ймовірності появи події: .
- •Перестановки: . Сполучення: .
Розділ 16.7.Знаходження параметрів множинної лінійної залежності
У моделюванні економічних процесів найбільшого розповсюдження набула залежність
.
(16.6)
Досить поширене використання цієї залежності пояснюється відносною простотою як її побудови, так і інтерпритації параметрів. Застосуємо до обчислення параметрів залежності (16.6) метод найменших квадратів.
Одержуємо систему
Після елементарних перетворень одержуємо систему рівнянь, з якоъ знаходимо параметри рывняння (10.6).
(16.7)
Аналогічним чином, можна побудувати трьохфакторне рівняння
.
(16.8)
Після перетворень система (16.7) для визначення параметрів рівняння (16.8) набуде вигляду
(16.9)
Приклад: Розрахуємо параметри трьохфакторної лінійної функції, що встановлює залежність виробництва валової продукції у, млн. грн. підприємств від суми основних х1 і оборотних х2 виробничих фондів, млн. грн. і середньорічної чисельності працюючих х3, чол. Вихідні дані для побудови виробничої функції представлені у таблиці 1.
Таблиця 1
Виробничі фонди, число працюючих і виробництво валової продукції підприємств
х1 |
х2 |
х3 |
у |
|
|
|
|
|
|
|
|
|
|
10 |
3 |
250 |
4,1 |
100 |
9 |
62500 |
16,81 |
30 |
2500 |
750 |
41,0 |
12,3 |
1025 |
12 |
5 |
280 |
5,6 |
144 |
25 |
78400 |
31,36 |
60 |
3360 |
1400 |
67,2 |
28,0 |
1568 |
7 |
2 |
240 |
3,1 |
49 |
4 |
57600 |
9,61 |
14 |
1680 |
480 |
21,7 |
6,2 |
744 |
13 |
6 |
290 |
6,4 |
169 |
36 |
84100 |
40,96 |
78 |
3770 |
1740 |
83,2 |
38,4 |
1856 |
18 |
7 |
510 |
8,6 |
324 |
49 |
260100 |
73,96 |
126 |
9180 |
3570 |
154,8 |
60,2 |
4386 |
11 |
5 |
270 |
5,5 |
121 |
25 |
72900 |
30,25 |
55 |
2970 |
1350 |
60,5 |
27,5 |
1485 |
23 |
10 |
540 |
11,0 |
529 |
100 |
291600 |
121,00 |
230 |
12420 |
5400 |
253,0 |
110,0 |
5940 |
16 |
8 |
300 |
7,9 |
256 |
64 |
90000 |
62,41 |
128 |
4800 |
2400 |
126,4 |
63,2 |
2370 |
7 |
3 |
250 |
3,8 |
49 |
9 |
62500 |
14,44 |
21 |
1750 |
750 |
26,6 |
11,4 |
950 |
17 |
7 |
510 |
8,5 |
289 |
49 |
260100 |
72,25 |
119 |
8670 |
3570 |
144,5 |
59,5 |
4335 |
|
|||||||||||||
134 |
56 |
3440 |
64,5 |
2030 |
370 |
1319800 |
473,05 |
861 |
51100 |
21410 |
978,9 |
416,7 |
24659 |
Підставимо значення сум у систему (16.9) і одержимо систему з чотирьох рівнянь і чотирьох невідомих.
Знайдемо розв’язок системи (наприклад за методом Гаусса)
Звідси, лінійна функція, що відображає зв’язок виробництва вадової продукції від суми основних і оборотних фондів та числа працюючих, набуде вигляду
.
Для перевірки точності обрахунків порівняємо емпіричні і теоретичні значення функції
|
4,1 |
5,6 |
3,1 |
6,4 |
8,6 |
5,5 |
11,0 |
7,9 |
3,8 |
8,5 |
|
|
4,073 |
5,624 |
3,140 |
6,373 |
8,587 |
5,480 |
11,018 |
7,912 |
3,798 |
8,495 |
64,500 |
Як видно, сумарні значення емпіричних і теоретичних частот співпадають.
