- •Теорія ймовірностей і математична статистика для економістів
- •Розділ 1.1. Види подій
- •Види випадкових подій
- •Розділ 1.2. Класичне означення ймовірності появи події
- •Рішення
- •Властивості ймовірності
- •Задачі до розділу 1.2
- •Розділ 1.3. Елементи комбінаторики
- •Розміщення
- •Рішення
- •Перестановки
- •Рішення
- •Рішення
- •Сполучення
- •Рішення
- •Розділ 1.4. Знаходження ймовірності появи події з застосуванням елементів комбінаторики
- •Рішення
- •Задачі до розділу 1.4
- •Розділ 1.5. Статистична ймовірність
- •Розділ 2.1. Теорема додавання ймовірностей несумісних подій
- •Рішення
- •Рішення
- •Задачі до розділу 2.1
- •Розділ 2.2. Ймовірність повної групи подій. Протилежні події
- •Розділ 2.3. Множення ймовірностей
- •Умовна ймовірність
- •Задачі до розділу 2.3
- •Розділ 2.4. Теорема додавання ймовірностей сумісних подій
- •Розділ 2.5. Завдання до заняття 2
- •Розділ 3.1. Ймовірність появи хоча б однієї події
- •Задачі до розділу 3.1
- •Розділ 3.2. Формула повної ймовірності
- •Задачі до розділу 3.2
- •Розділ 3.3. Ймовірність гіпотез. Формули Бейєса
- •Рішення
- •Задачі до розділу 3.3
- •Розділ 3.4. Завдання до заняття 3
- •Розділ 4.1. Формула Бернуллі
- •Рішення
- •Задачі до розділу 4.1
- •Розділ 4.2. Локальна теорема Лапласа
- •Рішення
- •Задачі до розділу 4.2
- •Розділ 4.3. Завдання до заняття 4 Теоретичні питання до заняття 4
- •Розділ 5.1. Інтегральна теорема Лапласа
- •Задачі до розділу 5.1 Задача 5.1.1
- •Розділ 5.2. Формула Пуассона
- •Задачі до розділу5.2
- •Розділ 5.3. Завдання до заняття 5 Теоретичні питання до заняття 5
- •Розділ 6.1. Дискретні і неперервні випадкові величини
- •Розділ 6.2. Закон розподілу дискретної випадкової величини
- •Задачі до розділу 6.2
- •Розділ 6.3. Математичне сподівання дискретної випадкової величини та її властивості
- •Задачі до розділу 6.3
- •Розділ 6.4. Завдання до заняття 6
- •Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини
- •Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення
- •Задачі до розділу 7.2
- •Розділ 7.3. Завдання до заняття 7
- •Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
- •Задачі до розділу 8.1
- •Розділ 8.2. Диференціальна функція розподілу та її властивості
- •Задачі до розділу 8.2
- •Розділ 8.3. Завдання до заняття 8
- •Розділ 9.1. Математичне сподівання неперервної випадкової величини
- •Задачі до розділу 9.1
- •Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини
- •Задачі до розділу 9.2
- •Розділ 9.3. Завдання до заняття 9
- •Розділ 10.1. Закони розподілу дискретних випадкових величин Біноміальний закон розподілу
- •Геометричний розподіл.
- •Задачі до розділу 10.1
- •Розділ 10.2. Закони розподілу неперервних випадкових величин Закон рівномірного розподілу ймовірностей.
- •Числові характеристики рівномірного розподілу
- •Нормальний розподіл (розподіл Гауса)
- •Задачі до розділу 10.2
- •Розділ 10.3. Завдання до заняття 10
- •Розділ 11.1. Предмет і задачі математичної статистики
- •Розділ 11.2. Емпірична функція розподілу
- •Властивості емпіричної функції
- •11.3. Графічна інтерпретація статистичного ряду
- •Розділ 11.4. Завдання до заняття 11
- •Розділ 12.1. Генеральна та вибіркова середні. Властивості середньої
- •Рішення
- •Властивості середньої
- •Розділ 12.2. Генеральна і вибіркова дисперсії та середнє квадратичне відхилення
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Розділ 12.4. Завдання до заняття 12
- •Розділ 13.1. Коефіцієнт варіації
- •Рішення
- •Для знаходження середнього квадрата ознаки складемо таблицю
- •Розділ 13.2. Медіана варіаційного ряду
- •Розділ 13.3. Мода варіаційного ряду
- •Розділ 13.4. Асиметрія і ексцес
- •Моменти варіаційного ряду
- •Асиметрія і ексцес
- •Розділ 13.5. Завдання до заняття 13
- •Розділ 14.1. Метод добутків для обчислення вибіркової середньої і дисперсії
- •Розділ 14.2. Властивості статистичних оцінок параметрів розподілу. Оцінка генеральної дисперсії по виправленій вибірковій
- •Розділ 14.3. Точність оцінки. Довірча ймовірність. Довірчий інтервал
- •Задачі до розділу14.3
- •Розділ 14.4. Завдання до заняття 14
- •Розділ 15.1. Статистична гіпотеза (основні поняття)
- •Розділ 15.2. Критична область. Область приняття нульової гіпотези. Критична точка
- •Відшукування правосторонньої критичної області
- •Відшукування лівосторонньої критичної області
- •Відшукування двосторонньої критичної області
- •Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей
- •Задачі до розділу 15.3
- •Розділ 15.4. Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона)
- •Методика обчислення теоретичних частот нормального розподілу
- •Розділ 15.5. Завдання до заняття 15
- •Розділ 1.6. Поняття кореляції
- •Розділ 16.2. Метод найменших квадратів (загальні поняття)
- •Розділ 16.3. Побудова рівняння лінійної функції
- •Розділ 16.4. Побудова рівняння квадратичної функції
- •Розділ 16.5. Побудова рівняння гіперболічної функції
- •Розділ 16.6. Побудова рівняння показникової функції
- •Розділ 16.7.Знаходження параметрів множинної лінійної залежності
- •Розділ 17.1. Кореляційна таблиця
- •Розділ 17.2. Відшукування параметрів вибіркового рівняння прямої лінії регресії по згрупованим даним
- •Розділ 17.3. Вибірковий коефіцієнт кореляції
- •Розділ 17.4. Завдання до заняття 17
- •Рекомендована література
- •Додатки
- •Значення функції
- •Значення функції
- •Розподіл Пірсона ( - Пірсона)
- •Основні поняття і терміни
- •Основні теореми і формули Класичне означення ймовірності появи події: .
- •Перестановки: . Сполучення: .
Розділ 13.3. Мода варіаційного ряду
Означення: Модою варіаційного ряду називається варіанта, що найбільш часто зустрічається, тобто має найбільшу частоту.
Як видно з означення, при дискретному розподілі знаходження значення моди не потребує будь-яких складних обчислень. Із статистичного розподілу обирається найбільша частота і варіанта, яка їй відповідає і є модою.
Для неперервного розподілу мода обчислюється за формулою
(13.3)
де
- початкове значення модального інтервалу;
- довжина модального інтервалу (шаг);
- частота модального інтервалу;
- частота інтервалу, який знаходиться
перед модальним;
- частота інтервалу, який знаходиться
після модального.
Приклад:
Для попереднього прикладу про розподіл 49 промислових підприємств за швидкістю обігових коштів, знайти моду даного розподілу.
Рішення
За
формулою (13.3) обчислимо моду статистичного
ряду. Оскільки
,
то інтервал (40 – 50) є модальним.
Ляпунов Олександр Михайлович (6.06.1857 – 3.11.1918 рр.) – російський математик і механік, професор, академік. Зробив важливий внесок до теорії ймовірностей, дав просте і строге доведення центральної граничної теореми у більш загальній формі, для цього розробив оригінальний метод характеристичних функцій, який широко застосовується у сучасній теорії ймовірностей.
Розділ 13.4. Асиметрія і ексцес
Для введення таких числових характеристик, як асиметрія і ексцес, необхідно спочатку ввести поняття моментів варіаційного ряду.
Моменти варіаційного ряду
Означення:
Початковим
моментом
варіаційного ряду порядку
називається
середня арифметична
-ї
степені варіант, тобто
.
(13.4)
При
,
одержимо початковий момент нульового
порядку
При
,
одержимо початковий момент першого
порядку, який є середнім арифметичним.
Означення:
Центральним
моментом
статистичного ряду порядку
називається середнє арифметичне
-тих
степеней відхилень варіант від їх
середніх
.
(13.5)
При , одержимо отримаємо центральний момент нульового порядку
При , одержимо центральний момент першого порядку
При
,
одержимо центральний момент другого
порядку, який є дисперсією
Асиметрія і ексцес
Означення: Коефіцієнтом асиметрії А називається відношення центрального моменту третього порядку до куба середнього квадратичного відхилення
.
(13.6)
Якщо
у варіаційному ряді більше варіант
таких, що
,
тоді коефіцієнт асиметрії додатній, та
має місце правостороння асиметрія. Якщо
ж
,
тоді має місце лівостороння асиметрія.
Означення: Ексцесом або коефіцієнтом крутості Е називається зменшене на три одиниці відношення центрального моменту четвертого порядку до четвертої степені середнього квадратичного відхилення
.
(13.7)
Якщо
,
тоді криві менш круті і називаються
плоско вершинними, якщо
- більш круті, мають більш гостру вершину
і називаються гостро вершинними.
Приклад:
Для попереднього прикладу про розподіл 49 промислових підприємств за швидкістю обігових коштів, знайти асиметрію і ексцес.
Рішення
Для знаходження асиметрії і ексцесу складемо розрахункову таблицю
№п/п |
-
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
2 |
20 – 30 |
8 |
25 |
200 |
2699,66 |
-49592,75 |
911018,82 |
3 |
30 – 40 |
11 |
35 |
385 |
770,63 |
-6450,17 |
53987,92 |
4 |
40 – 50 |
16 |
45 |
720 |
42,51 |
69,29 |
112,94 |
5 |
50 – 60 |
9 |
55 |
495 |
1217,31 |
14157,32 |
164649,63 |
6 |
60 - 70 |
5 |
65 |
325 |
2339,28 |
50598,63 |
1094448,37 |
7 |
|
49 |
|
2125 |
7069,39 |
8782,32 |
2224217,68 |
Обсяг
генеральної
сукупності
,
тоді за
формулою (12.2)
заняття 12
знайдемо
середню арифметичну
Тоді за формулою (12.4) і (12.5) заняття 12 знайдемо дисперсію і середнє квадратичне відхилення
.
За формулою (13.6) знайдемо асиметрію
За формулою (13.7) знайдемо ексцес
