- •Теорія ймовірностей і математична статистика для економістів
- •Розділ 1.1. Види подій
- •Види випадкових подій
- •Розділ 1.2. Класичне означення ймовірності появи події
- •Рішення
- •Властивості ймовірності
- •Задачі до розділу 1.2
- •Розділ 1.3. Елементи комбінаторики
- •Розміщення
- •Рішення
- •Перестановки
- •Рішення
- •Рішення
- •Сполучення
- •Рішення
- •Розділ 1.4. Знаходження ймовірності появи події з застосуванням елементів комбінаторики
- •Рішення
- •Задачі до розділу 1.4
- •Розділ 1.5. Статистична ймовірність
- •Розділ 2.1. Теорема додавання ймовірностей несумісних подій
- •Рішення
- •Рішення
- •Задачі до розділу 2.1
- •Розділ 2.2. Ймовірність повної групи подій. Протилежні події
- •Розділ 2.3. Множення ймовірностей
- •Умовна ймовірність
- •Задачі до розділу 2.3
- •Розділ 2.4. Теорема додавання ймовірностей сумісних подій
- •Розділ 2.5. Завдання до заняття 2
- •Розділ 3.1. Ймовірність появи хоча б однієї події
- •Задачі до розділу 3.1
- •Розділ 3.2. Формула повної ймовірності
- •Задачі до розділу 3.2
- •Розділ 3.3. Ймовірність гіпотез. Формули Бейєса
- •Рішення
- •Задачі до розділу 3.3
- •Розділ 3.4. Завдання до заняття 3
- •Розділ 4.1. Формула Бернуллі
- •Рішення
- •Задачі до розділу 4.1
- •Розділ 4.2. Локальна теорема Лапласа
- •Рішення
- •Задачі до розділу 4.2
- •Розділ 4.3. Завдання до заняття 4 Теоретичні питання до заняття 4
- •Розділ 5.1. Інтегральна теорема Лапласа
- •Задачі до розділу 5.1 Задача 5.1.1
- •Розділ 5.2. Формула Пуассона
- •Задачі до розділу5.2
- •Розділ 5.3. Завдання до заняття 5 Теоретичні питання до заняття 5
- •Розділ 6.1. Дискретні і неперервні випадкові величини
- •Розділ 6.2. Закон розподілу дискретної випадкової величини
- •Задачі до розділу 6.2
- •Розділ 6.3. Математичне сподівання дискретної випадкової величини та її властивості
- •Задачі до розділу 6.3
- •Розділ 6.4. Завдання до заняття 6
- •Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини
- •Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення
- •Задачі до розділу 7.2
- •Розділ 7.3. Завдання до заняття 7
- •Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
- •Задачі до розділу 8.1
- •Розділ 8.2. Диференціальна функція розподілу та її властивості
- •Задачі до розділу 8.2
- •Розділ 8.3. Завдання до заняття 8
- •Розділ 9.1. Математичне сподівання неперервної випадкової величини
- •Задачі до розділу 9.1
- •Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини
- •Задачі до розділу 9.2
- •Розділ 9.3. Завдання до заняття 9
- •Розділ 10.1. Закони розподілу дискретних випадкових величин Біноміальний закон розподілу
- •Геометричний розподіл.
- •Задачі до розділу 10.1
- •Розділ 10.2. Закони розподілу неперервних випадкових величин Закон рівномірного розподілу ймовірностей.
- •Числові характеристики рівномірного розподілу
- •Нормальний розподіл (розподіл Гауса)
- •Задачі до розділу 10.2
- •Розділ 10.3. Завдання до заняття 10
- •Розділ 11.1. Предмет і задачі математичної статистики
- •Розділ 11.2. Емпірична функція розподілу
- •Властивості емпіричної функції
- •11.3. Графічна інтерпретація статистичного ряду
- •Розділ 11.4. Завдання до заняття 11
- •Розділ 12.1. Генеральна та вибіркова середні. Властивості середньої
- •Рішення
- •Властивості середньої
- •Розділ 12.2. Генеральна і вибіркова дисперсії та середнє квадратичне відхилення
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Розділ 12.4. Завдання до заняття 12
- •Розділ 13.1. Коефіцієнт варіації
- •Рішення
- •Для знаходження середнього квадрата ознаки складемо таблицю
- •Розділ 13.2. Медіана варіаційного ряду
- •Розділ 13.3. Мода варіаційного ряду
- •Розділ 13.4. Асиметрія і ексцес
- •Моменти варіаційного ряду
- •Асиметрія і ексцес
- •Розділ 13.5. Завдання до заняття 13
- •Розділ 14.1. Метод добутків для обчислення вибіркової середньої і дисперсії
- •Розділ 14.2. Властивості статистичних оцінок параметрів розподілу. Оцінка генеральної дисперсії по виправленій вибірковій
- •Розділ 14.3. Точність оцінки. Довірча ймовірність. Довірчий інтервал
- •Задачі до розділу14.3
- •Розділ 14.4. Завдання до заняття 14
- •Розділ 15.1. Статистична гіпотеза (основні поняття)
- •Розділ 15.2. Критична область. Область приняття нульової гіпотези. Критична точка
- •Відшукування правосторонньої критичної області
- •Відшукування лівосторонньої критичної області
- •Відшукування двосторонньої критичної області
- •Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей
- •Задачі до розділу 15.3
- •Розділ 15.4. Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона)
- •Методика обчислення теоретичних частот нормального розподілу
- •Розділ 15.5. Завдання до заняття 15
- •Розділ 1.6. Поняття кореляції
- •Розділ 16.2. Метод найменших квадратів (загальні поняття)
- •Розділ 16.3. Побудова рівняння лінійної функції
- •Розділ 16.4. Побудова рівняння квадратичної функції
- •Розділ 16.5. Побудова рівняння гіперболічної функції
- •Розділ 16.6. Побудова рівняння показникової функції
- •Розділ 16.7.Знаходження параметрів множинної лінійної залежності
- •Розділ 17.1. Кореляційна таблиця
- •Розділ 17.2. Відшукування параметрів вибіркового рівняння прямої лінії регресії по згрупованим даним
- •Розділ 17.3. Вибірковий коефіцієнт кореляції
- •Розділ 17.4. Завдання до заняття 17
- •Рекомендована література
- •Додатки
- •Значення функції
- •Значення функції
- •Розподіл Пірсона ( - Пірсона)
- •Основні поняття і терміни
- •Основні теореми і формули Класичне означення ймовірності появи події: .
- •Перестановки: . Сполучення: .
Рішення
Обсяг
генеральної
сукупності
,
тоді за
формулою (12.2)
знайдемо
середню арифметичну
За формулою (12.4) знайдемо дисперсію
Як видно з означення, дисперсія характеризує відхилення від середньої у квадратних одиницях, що при розв’язанні задач змістовного характеру є незручним, тому вводять ще одну числову характеристику, яка характеризує розсіювання – середнє квадратичне відхилення.
Означення: Середнім квадратичним відхиленням називається корінь квадратний із дисперсії
(12.5)
Розділ 12.3. Формула для обчислення дисперсії. Властивості дисперсії
Як видно з попереднього розділу, обчислення дисперсії за означенням є досить громіздким, тому існує більш простий спосіб її обчислення.
Теорема: Дисперсія дорівнює середньому квадратів значень ознаки мінус квадрат загальної середньої.
.
(12.6)
Доведення
Позначимо
, (12.7)
і враховуючи,
що
,
тоді
Приклад:
У попередньому прикладі обчислити дисперсію за допомогою теореми і формули (12.6).
Рішення
Для знаходження середнього квадрата ознаки складемо таблицю
-
9
36
64
144
3
5
8
4
Тоді за формулою (12.7)
Враховуючи,
що
,
застосуємо формулу (12.6)
Властивості дисперсії
Властивість1:
Якщо всі варіанти збільшити (зменшити)
в одне й те ж число
раз, тоді дисперсія збільшиться
(зменшиться) в
раз.
Доведення
Якщо кожну варіанту
збільшити в
раз, тоді середнє арифметичне також
збільшиться в
раз, тобто якщо
,
тоді
.
Властивість 2: Збільшення або зменшення варіант на одну і ту ж постійну величину не змінює дисперсію.
Доведення
.
Властивість 3: При збільшенні та зменшенні частот в одну й ту ж кількість раз дисперсія не зміниться.
Доведення
.
Задача 12.3.1
Для вибірки задачі 10.3.1 заняття 10 знайти вибіркову середню, дисперсію (за означенням і теоремою) та середнє квадратичне відхилення.
Рішення
Використаємо статистичний розподіл задачі 10.3.1 розділу 10 та складемо розрахункову таблицю.
№ п/п |
хі |
пі |
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
1. |
2 |
12 |
24 |
-1,38 |
1,9044 |
22,8528 |
48 |
2. |
3 |
21 |
63 |
-0,38 |
0,1444 |
3,0324 |
189 |
3. |
4 |
24 |
96 |
0,62 |
0,3844 |
9,2256 |
384 |
4. |
5 |
6 |
30 |
1,62 |
2,6244 |
15,7464 |
150 |
5. |
|
63 |
217 |
|
|
50,8572 |
771 |
За формулою (12.2) і четвертим стовпцем таблиці знайдемо вибіркову середню (середнє значення оцінки за іспит)
Знайдемо дисперсію за означенням, використовуючи формулу (12.4) і 5-7 стовпці таблиці
Для знаходження дисперсії за теоремою, спочатку знайдемо середню квадрата за допомогою формули (12.7) і восьмого стовпця таблиці
.
