- •Теорія ймовірностей і математична статистика для економістів
- •Розділ 1.1. Види подій
- •Види випадкових подій
- •Розділ 1.2. Класичне означення ймовірності появи події
- •Рішення
- •Властивості ймовірності
- •Задачі до розділу 1.2
- •Розділ 1.3. Елементи комбінаторики
- •Розміщення
- •Рішення
- •Перестановки
- •Рішення
- •Рішення
- •Сполучення
- •Рішення
- •Розділ 1.4. Знаходження ймовірності появи події з застосуванням елементів комбінаторики
- •Рішення
- •Задачі до розділу 1.4
- •Розділ 1.5. Статистична ймовірність
- •Розділ 2.1. Теорема додавання ймовірностей несумісних подій
- •Рішення
- •Рішення
- •Задачі до розділу 2.1
- •Розділ 2.2. Ймовірність повної групи подій. Протилежні події
- •Розділ 2.3. Множення ймовірностей
- •Умовна ймовірність
- •Задачі до розділу 2.3
- •Розділ 2.4. Теорема додавання ймовірностей сумісних подій
- •Розділ 2.5. Завдання до заняття 2
- •Розділ 3.1. Ймовірність появи хоча б однієї події
- •Задачі до розділу 3.1
- •Розділ 3.2. Формула повної ймовірності
- •Задачі до розділу 3.2
- •Розділ 3.3. Ймовірність гіпотез. Формули Бейєса
- •Рішення
- •Задачі до розділу 3.3
- •Розділ 3.4. Завдання до заняття 3
- •Розділ 4.1. Формула Бернуллі
- •Рішення
- •Задачі до розділу 4.1
- •Розділ 4.2. Локальна теорема Лапласа
- •Рішення
- •Задачі до розділу 4.2
- •Розділ 4.3. Завдання до заняття 4 Теоретичні питання до заняття 4
- •Розділ 5.1. Інтегральна теорема Лапласа
- •Задачі до розділу 5.1 Задача 5.1.1
- •Розділ 5.2. Формула Пуассона
- •Задачі до розділу5.2
- •Розділ 5.3. Завдання до заняття 5 Теоретичні питання до заняття 5
- •Розділ 6.1. Дискретні і неперервні випадкові величини
- •Розділ 6.2. Закон розподілу дискретної випадкової величини
- •Задачі до розділу 6.2
- •Розділ 6.3. Математичне сподівання дискретної випадкової величини та її властивості
- •Задачі до розділу 6.3
- •Розділ 6.4. Завдання до заняття 6
- •Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини
- •Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення
- •Задачі до розділу 7.2
- •Розділ 7.3. Завдання до заняття 7
- •Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
- •Задачі до розділу 8.1
- •Розділ 8.2. Диференціальна функція розподілу та її властивості
- •Задачі до розділу 8.2
- •Розділ 8.3. Завдання до заняття 8
- •Розділ 9.1. Математичне сподівання неперервної випадкової величини
- •Задачі до розділу 9.1
- •Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини
- •Задачі до розділу 9.2
- •Розділ 9.3. Завдання до заняття 9
- •Розділ 10.1. Закони розподілу дискретних випадкових величин Біноміальний закон розподілу
- •Геометричний розподіл.
- •Задачі до розділу 10.1
- •Розділ 10.2. Закони розподілу неперервних випадкових величин Закон рівномірного розподілу ймовірностей.
- •Числові характеристики рівномірного розподілу
- •Нормальний розподіл (розподіл Гауса)
- •Задачі до розділу 10.2
- •Розділ 10.3. Завдання до заняття 10
- •Розділ 11.1. Предмет і задачі математичної статистики
- •Розділ 11.2. Емпірична функція розподілу
- •Властивості емпіричної функції
- •11.3. Графічна інтерпретація статистичного ряду
- •Розділ 11.4. Завдання до заняття 11
- •Розділ 12.1. Генеральна та вибіркова середні. Властивості середньої
- •Рішення
- •Властивості середньої
- •Розділ 12.2. Генеральна і вибіркова дисперсії та середнє квадратичне відхилення
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Розділ 12.4. Завдання до заняття 12
- •Розділ 13.1. Коефіцієнт варіації
- •Рішення
- •Для знаходження середнього квадрата ознаки складемо таблицю
- •Розділ 13.2. Медіана варіаційного ряду
- •Розділ 13.3. Мода варіаційного ряду
- •Розділ 13.4. Асиметрія і ексцес
- •Моменти варіаційного ряду
- •Асиметрія і ексцес
- •Розділ 13.5. Завдання до заняття 13
- •Розділ 14.1. Метод добутків для обчислення вибіркової середньої і дисперсії
- •Розділ 14.2. Властивості статистичних оцінок параметрів розподілу. Оцінка генеральної дисперсії по виправленій вибірковій
- •Розділ 14.3. Точність оцінки. Довірча ймовірність. Довірчий інтервал
- •Задачі до розділу14.3
- •Розділ 14.4. Завдання до заняття 14
- •Розділ 15.1. Статистична гіпотеза (основні поняття)
- •Розділ 15.2. Критична область. Область приняття нульової гіпотези. Критична точка
- •Відшукування правосторонньої критичної області
- •Відшукування лівосторонньої критичної області
- •Відшукування двосторонньої критичної області
- •Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей
- •Задачі до розділу 15.3
- •Розділ 15.4. Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона)
- •Методика обчислення теоретичних частот нормального розподілу
- •Розділ 15.5. Завдання до заняття 15
- •Розділ 1.6. Поняття кореляції
- •Розділ 16.2. Метод найменших квадратів (загальні поняття)
- •Розділ 16.3. Побудова рівняння лінійної функції
- •Розділ 16.4. Побудова рівняння квадратичної функції
- •Розділ 16.5. Побудова рівняння гіперболічної функції
- •Розділ 16.6. Побудова рівняння показникової функції
- •Розділ 16.7.Знаходження параметрів множинної лінійної залежності
- •Розділ 17.1. Кореляційна таблиця
- •Розділ 17.2. Відшукування параметрів вибіркового рівняння прямої лінії регресії по згрупованим даним
- •Розділ 17.3. Вибірковий коефіцієнт кореляції
- •Розділ 17.4. Завдання до заняття 17
- •Рекомендована література
- •Додатки
- •Значення функції
- •Значення функції
- •Розподіл Пірсона ( - Пірсона)
- •Основні поняття і терміни
- •Основні теореми і формули Класичне означення ймовірності появи події: .
- •Перестановки: . Сполучення: .
Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
Як відомо із заняття 6 неперервною випадковою величиною називають таку величину, яка може приймати всі значення з деякого скінченного або нескінченного проміжку, тому задати її закон розподілу за допомогою таблиці неможливо.
Таким
чином для описання неперервної випадкової
величини
необхідно припустити, що відома
ймовірність попадання Х
у довільний інтервал або відома функція
розподілу ймовірностей.
Означення: Функцією розподілу (інтегральною функцією розподілу) випадкової величини Х називається ймовірність того, що випадкова величина Х прийме значення менше від фіксованого дійсного числа х, тобто
.
(8.1)
Геометрична
інтерпретація функції розподілу полягає
у наступному. Якщо випадкову величину
розглядати як випадкову точку на осі
Ох
(рис.
1), яка за результатом випробування може
зайняти те чи інше положення на цій осі,
то функція
є ймовірність того, що випадкова точка
Х
у результаті випробування попадає
лівіше х.
Рис.1. Геометрична інтерпретація всіх можливих значень функції розподілу.
Неперервна випадкова величина має неперервну функцію розподілу, графік якої має форму плавної кривої (рис. 2).
Рис.2. Геометрична інтерпретація функції розподілу неперервної випадкової величини.
Розглянемо загальні властивості функції розподілу.
Властивість 1: Функція розподілу F(x) є невід’ємною величиною, яка міститься між нулем і одиницею
.
Дійсно, це випливає з означення інтегральної функції як ймовірності і властивості ймовірності.
Властивість
2:
Функція розподілу F(x)
є неспадною функцією, тобто
,
якщо
.
Доведення
Нехай
.
Подія, яка полягає в тому, що випадкова
величина Х
приймає значення менше за
,
складається з двох подій:
або Х прийме значення менше х1 і
;
або Х прийме значення з проміжку
і
.
Тоді за теоремою додавання ймовірностей маємо
,
або
.
(8.2)
Із формули (8.2) випливає
,
бо
.
Наслідок
1: Ймовірність
того, що випадкова величина
прийме значення із проміжку
,
дорівнює приросту функції
на цьому проміжку, тобто
.
(8.3)
Приклад:
Випадкова величина задана інтегральною функцією
Знайти ймовірність того, що випадкова величина Х прийме значення з проміжку [-2,0).
Рішення
За формулою (8.3) маємо
,
тобто
Наслідок 2: Ймовірність того, що неперервна випадкова величина Х прийме певне значення дорівнює нулю.
Доведення
Підставимо
у формулу (8.3)
,
,
тоді
.
Нехай
.
Оскільки Х
- неперервна випадкова величина, то
функція
теж неперервна, внаслідок цього маємо,
що приріст
в точці
,
тобто
,
а значить
.
(8.4)
Підкреслимо, що формула (8.4) теж тільки для неперервних випадкових величин, на відміну від дискретних.
Враховуючи формулу (8.4), можна записати
.
Наприклад:
.
Властивість 3: На мінус нескінченності функція розподілу дорівнює нулю, а на плюс нескінченності функція розподілу дорівнює одиниці, тобто
;
.
Зауваження: Сформульоване означення функції розподілу підходить і для дискретної випадкової величини.
Приклад:
Скласти функцію розподілу ймовірностей випадкової величини - числа виготовлених деталей двома верстатами, які по черзі постачають деталі на конвейєр, при умові що необхідно виготовити 1 стандартну деталь, якщо ймовірності виготовлення стандартної деталі для кожного з них відповідно дорівнюють 0,85 і 0,90.
Рішення
Для
даного прикладу всі можливі значення
випадкової величини Х:
{0,1,2}.
Позначимо через
і
випадкові події виготовлення стандартної
деталі кожним верстатом з ймовірностями
і
,
а через
і
- протилежні події (виготовлення
бракованої деталі), ймовірності яких
відповідно
і
.
Знайдемо ймовірність появи випадкової
величини
Х.
Тобто,
При
-
всі браковані,
При
- одна стандартна деталь
При
-
дві стандартні деталі,
Складемо розподіл випадкової величини Х
Х |
0 |
1 |
2 |
Р |
0,015 |
0,220 |
0,765 |
За даними таблиці знаходимо функцію розподілу для дискретної випадкової величини
Ця
функція є кусково-неперервною з точками
розриву при всіх
Значення F(x)
знаходиться так. У перший інтервал
не попадає жодне із значень Х
=
0, 1, 2,
тому ймовірність дорівнює 0. Для всіх
лівіше знаходиться одне значення Х=0
з ймовірністю 0,015, тому що
Для
всіх значень
,
що у третьому інтервалі, лівіше знаходяться
два значення Х=0
і Х=1,
тому
.
Для
інтегральна
функція дорівнює
Графік функції F(x) розподілу дискретної випадкової величини для даного прикладу наведено на рис.3.
Р
ис.3.
Графік інтегральної функції розподілу
дискретної випадкової величини
