- •Теорія ймовірностей і математична статистика для економістів
- •Розділ 1.1. Види подій
- •Види випадкових подій
- •Розділ 1.2. Класичне означення ймовірності появи події
- •Рішення
- •Властивості ймовірності
- •Задачі до розділу 1.2
- •Розділ 1.3. Елементи комбінаторики
- •Розміщення
- •Рішення
- •Перестановки
- •Рішення
- •Рішення
- •Сполучення
- •Рішення
- •Розділ 1.4. Знаходження ймовірності появи події з застосуванням елементів комбінаторики
- •Рішення
- •Задачі до розділу 1.4
- •Розділ 1.5. Статистична ймовірність
- •Розділ 2.1. Теорема додавання ймовірностей несумісних подій
- •Рішення
- •Рішення
- •Задачі до розділу 2.1
- •Розділ 2.2. Ймовірність повної групи подій. Протилежні події
- •Розділ 2.3. Множення ймовірностей
- •Умовна ймовірність
- •Задачі до розділу 2.3
- •Розділ 2.4. Теорема додавання ймовірностей сумісних подій
- •Розділ 2.5. Завдання до заняття 2
- •Розділ 3.1. Ймовірність появи хоча б однієї події
- •Задачі до розділу 3.1
- •Розділ 3.2. Формула повної ймовірності
- •Задачі до розділу 3.2
- •Розділ 3.3. Ймовірність гіпотез. Формули Бейєса
- •Рішення
- •Задачі до розділу 3.3
- •Розділ 3.4. Завдання до заняття 3
- •Розділ 4.1. Формула Бернуллі
- •Рішення
- •Задачі до розділу 4.1
- •Розділ 4.2. Локальна теорема Лапласа
- •Рішення
- •Задачі до розділу 4.2
- •Розділ 4.3. Завдання до заняття 4 Теоретичні питання до заняття 4
- •Розділ 5.1. Інтегральна теорема Лапласа
- •Задачі до розділу 5.1 Задача 5.1.1
- •Розділ 5.2. Формула Пуассона
- •Задачі до розділу5.2
- •Розділ 5.3. Завдання до заняття 5 Теоретичні питання до заняття 5
- •Розділ 6.1. Дискретні і неперервні випадкові величини
- •Розділ 6.2. Закон розподілу дискретної випадкової величини
- •Задачі до розділу 6.2
- •Розділ 6.3. Математичне сподівання дискретної випадкової величини та її властивості
- •Задачі до розділу 6.3
- •Розділ 6.4. Завдання до заняття 6
- •Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини
- •Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення
- •Задачі до розділу 7.2
- •Розділ 7.3. Завдання до заняття 7
- •Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
- •Задачі до розділу 8.1
- •Розділ 8.2. Диференціальна функція розподілу та її властивості
- •Задачі до розділу 8.2
- •Розділ 8.3. Завдання до заняття 8
- •Розділ 9.1. Математичне сподівання неперервної випадкової величини
- •Задачі до розділу 9.1
- •Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини
- •Задачі до розділу 9.2
- •Розділ 9.3. Завдання до заняття 9
- •Розділ 10.1. Закони розподілу дискретних випадкових величин Біноміальний закон розподілу
- •Геометричний розподіл.
- •Задачі до розділу 10.1
- •Розділ 10.2. Закони розподілу неперервних випадкових величин Закон рівномірного розподілу ймовірностей.
- •Числові характеристики рівномірного розподілу
- •Нормальний розподіл (розподіл Гауса)
- •Задачі до розділу 10.2
- •Розділ 10.3. Завдання до заняття 10
- •Розділ 11.1. Предмет і задачі математичної статистики
- •Розділ 11.2. Емпірична функція розподілу
- •Властивості емпіричної функції
- •11.3. Графічна інтерпретація статистичного ряду
- •Розділ 11.4. Завдання до заняття 11
- •Розділ 12.1. Генеральна та вибіркова середні. Властивості середньої
- •Рішення
- •Властивості середньої
- •Розділ 12.2. Генеральна і вибіркова дисперсії та середнє квадратичне відхилення
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Розділ 12.4. Завдання до заняття 12
- •Розділ 13.1. Коефіцієнт варіації
- •Рішення
- •Для знаходження середнього квадрата ознаки складемо таблицю
- •Розділ 13.2. Медіана варіаційного ряду
- •Розділ 13.3. Мода варіаційного ряду
- •Розділ 13.4. Асиметрія і ексцес
- •Моменти варіаційного ряду
- •Асиметрія і ексцес
- •Розділ 13.5. Завдання до заняття 13
- •Розділ 14.1. Метод добутків для обчислення вибіркової середньої і дисперсії
- •Розділ 14.2. Властивості статистичних оцінок параметрів розподілу. Оцінка генеральної дисперсії по виправленій вибірковій
- •Розділ 14.3. Точність оцінки. Довірча ймовірність. Довірчий інтервал
- •Задачі до розділу14.3
- •Розділ 14.4. Завдання до заняття 14
- •Розділ 15.1. Статистична гіпотеза (основні поняття)
- •Розділ 15.2. Критична область. Область приняття нульової гіпотези. Критична точка
- •Відшукування правосторонньої критичної області
- •Відшукування лівосторонньої критичної області
- •Відшукування двосторонньої критичної області
- •Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей
- •Задачі до розділу 15.3
- •Розділ 15.4. Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона)
- •Методика обчислення теоретичних частот нормального розподілу
- •Розділ 15.5. Завдання до заняття 15
- •Розділ 1.6. Поняття кореляції
- •Розділ 16.2. Метод найменших квадратів (загальні поняття)
- •Розділ 16.3. Побудова рівняння лінійної функції
- •Розділ 16.4. Побудова рівняння квадратичної функції
- •Розділ 16.5. Побудова рівняння гіперболічної функції
- •Розділ 16.6. Побудова рівняння показникової функції
- •Розділ 16.7.Знаходження параметрів множинної лінійної залежності
- •Розділ 17.1. Кореляційна таблиця
- •Розділ 17.2. Відшукування параметрів вибіркового рівняння прямої лінії регресії по згрупованим даним
- •Розділ 17.3. Вибірковий коефіцієнт кореляції
- •Розділ 17.4. Завдання до заняття 17
- •Рекомендована література
- •Додатки
- •Значення функції
- •Значення функції
- •Розподіл Пірсона ( - Пірсона)
- •Основні поняття і терміни
- •Основні теореми і формули Класичне означення ймовірності появи події: .
- •Перестановки: . Сполучення: .
Розділ 1.2. Класичне означення ймовірності появи події
Ймовірність – одне з основних понять теорії ймовірностей. Це число, яке характеризує ступінь можливості здійснення події. Кожний з можливих результатів випробування називається елементарним результатом (елементарною подією).
Означення: Ймовірністю події А називається відношення числа сприятливих цій події випадків до загального числа всіх можливих випадків.
,
(1.1)
де т – число елементарних випадків (результатів), які сприяють появі події А; п – число всіх можливих випадків (елементарних результатів випробування).
Приклад:
Підприємство придбало 6 однакових верстатів, причому 2 з них виготовлено першим заводом-постачальником, 3 – другим і 1 – третім. Знайти ймовірність встановлення верстату, що виготовлений: а) третім заводом постачальником (подія А); б) першим заводом-постачальником (подія В).
Рішення
а)
;
б)
.
Властивості ймовірності
Ймовірність вірогідної події дорівнює одиниці.
В
цьому випадку т=п
,
тобто
.
Ймовірність неможливої події дорівнює нулю.
В
цьому випадку т=0
,
тобто
.
3. Ймовірність випадкової події є додатнє число, що знаходиться між нулем і одиницею.
В
цьому випадку
(всі випадки за винятком вірогідного і
неможливого)
,
тобто
.
Задачі до розділу 1.2
Задача 1.2.1
Кидають два кубики. Знайти ймовірність того, що на верхніх гранях з’явиться кількість очок, сума яких буде менше п’яти.
Рішення
Подія А – на верхніх гранях з’являться числа, сума очок яких менше п’яти. Розглянемо всі можливі варіанти появ очок на першому і другому кубиках, виписавши їх:
1к. 2к. 1к. 2к. 1к. 2к. 1к. 2к. 1к. 2к. 1к. 2к.
1 1 2 1 3 1 4 1 5 1 6 1
1 2 2 2 3 2 4 2 5 2 6 2
1 3 2 3 3 3 4 3 5 3 6 3
1 4 2 4 3 4 4 4 5 4 6 4
1 5 2 5 3 5 4 5 5 5 6 5
1 6 2 6 3 6 4 6 5 6 6 6
На кожному з кубиків може випасти шість різних варіантів, а кількість кубиків два, тому всіх можливих випадків n = 62 = 36.
Розглянувши всі можливі варіанти оберемо сприятливі, їх буде m=6.
За класичним означенням ймовірності:
.
Задача 1.2.2
Кинуто три монети. Знайти ймовірність того, що хоча б на двох монетах з’явиться „герб”.
Рішення
Розглянемо всі можливі варіанти, їх буде п = 23 = 8 (на одній монеті можливі два випадки, всього монет три ).
1 монета Г Г Г ч | ч | | ч| | ч | | ч|
2 монета Г Г ч Г | ч | | ч | | ч| | ч|
3 монета Г ч Г Г | ч | | ч| | ч| | ч|
Поняття „хоча б на двох монетах ” включає, що „герб” з’явиться або на двох з трьох, або на всіх трьох монетах. Тому кількість сприятливих подій буде m = 4. За класичним означенням ймовірності:
;
Задача 1.2.3
Кинуто чотири монети. Знайти ймовірність того, що на трьох з них з’явиться „герб”.
Задача 1.2.4
Кинуто два гральні кубика. Знайти ймовірність того, що сума очок, що випала, дорівнює восьми, а різниця чотирьом.
Задача 1.2.5
Кинуто три гральні кубика. Знайти ймовірність того, що на верхніх гранях з’являться тільки непарні числа очок.
