- •Теорія ймовірностей і математична статистика для економістів
- •Розділ 1.1. Види подій
- •Види випадкових подій
- •Розділ 1.2. Класичне означення ймовірності появи події
- •Рішення
- •Властивості ймовірності
- •Задачі до розділу 1.2
- •Розділ 1.3. Елементи комбінаторики
- •Розміщення
- •Рішення
- •Перестановки
- •Рішення
- •Рішення
- •Сполучення
- •Рішення
- •Розділ 1.4. Знаходження ймовірності появи події з застосуванням елементів комбінаторики
- •Рішення
- •Задачі до розділу 1.4
- •Розділ 1.5. Статистична ймовірність
- •Розділ 2.1. Теорема додавання ймовірностей несумісних подій
- •Рішення
- •Рішення
- •Задачі до розділу 2.1
- •Розділ 2.2. Ймовірність повної групи подій. Протилежні події
- •Розділ 2.3. Множення ймовірностей
- •Умовна ймовірність
- •Задачі до розділу 2.3
- •Розділ 2.4. Теорема додавання ймовірностей сумісних подій
- •Розділ 2.5. Завдання до заняття 2
- •Розділ 3.1. Ймовірність появи хоча б однієї події
- •Задачі до розділу 3.1
- •Розділ 3.2. Формула повної ймовірності
- •Задачі до розділу 3.2
- •Розділ 3.3. Ймовірність гіпотез. Формули Бейєса
- •Рішення
- •Задачі до розділу 3.3
- •Розділ 3.4. Завдання до заняття 3
- •Розділ 4.1. Формула Бернуллі
- •Рішення
- •Задачі до розділу 4.1
- •Розділ 4.2. Локальна теорема Лапласа
- •Рішення
- •Задачі до розділу 4.2
- •Розділ 4.3. Завдання до заняття 4 Теоретичні питання до заняття 4
- •Розділ 5.1. Інтегральна теорема Лапласа
- •Задачі до розділу 5.1 Задача 5.1.1
- •Розділ 5.2. Формула Пуассона
- •Задачі до розділу5.2
- •Розділ 5.3. Завдання до заняття 5 Теоретичні питання до заняття 5
- •Розділ 6.1. Дискретні і неперервні випадкові величини
- •Розділ 6.2. Закон розподілу дискретної випадкової величини
- •Задачі до розділу 6.2
- •Розділ 6.3. Математичне сподівання дискретної випадкової величини та її властивості
- •Задачі до розділу 6.3
- •Розділ 6.4. Завдання до заняття 6
- •Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини
- •Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення
- •Задачі до розділу 7.2
- •Розділ 7.3. Завдання до заняття 7
- •Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
- •Задачі до розділу 8.1
- •Розділ 8.2. Диференціальна функція розподілу та її властивості
- •Задачі до розділу 8.2
- •Розділ 8.3. Завдання до заняття 8
- •Розділ 9.1. Математичне сподівання неперервної випадкової величини
- •Задачі до розділу 9.1
- •Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини
- •Задачі до розділу 9.2
- •Розділ 9.3. Завдання до заняття 9
- •Розділ 10.1. Закони розподілу дискретних випадкових величин Біноміальний закон розподілу
- •Геометричний розподіл.
- •Задачі до розділу 10.1
- •Розділ 10.2. Закони розподілу неперервних випадкових величин Закон рівномірного розподілу ймовірностей.
- •Числові характеристики рівномірного розподілу
- •Нормальний розподіл (розподіл Гауса)
- •Задачі до розділу 10.2
- •Розділ 10.3. Завдання до заняття 10
- •Розділ 11.1. Предмет і задачі математичної статистики
- •Розділ 11.2. Емпірична функція розподілу
- •Властивості емпіричної функції
- •11.3. Графічна інтерпретація статистичного ряду
- •Розділ 11.4. Завдання до заняття 11
- •Розділ 12.1. Генеральна та вибіркова середні. Властивості середньої
- •Рішення
- •Властивості середньої
- •Розділ 12.2. Генеральна і вибіркова дисперсії та середнє квадратичне відхилення
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Розділ 12.4. Завдання до заняття 12
- •Розділ 13.1. Коефіцієнт варіації
- •Рішення
- •Для знаходження середнього квадрата ознаки складемо таблицю
- •Розділ 13.2. Медіана варіаційного ряду
- •Розділ 13.3. Мода варіаційного ряду
- •Розділ 13.4. Асиметрія і ексцес
- •Моменти варіаційного ряду
- •Асиметрія і ексцес
- •Розділ 13.5. Завдання до заняття 13
- •Розділ 14.1. Метод добутків для обчислення вибіркової середньої і дисперсії
- •Розділ 14.2. Властивості статистичних оцінок параметрів розподілу. Оцінка генеральної дисперсії по виправленій вибірковій
- •Розділ 14.3. Точність оцінки. Довірча ймовірність. Довірчий інтервал
- •Задачі до розділу14.3
- •Розділ 14.4. Завдання до заняття 14
- •Розділ 15.1. Статистична гіпотеза (основні поняття)
- •Розділ 15.2. Критична область. Область приняття нульової гіпотези. Критична точка
- •Відшукування правосторонньої критичної області
- •Відшукування лівосторонньої критичної області
- •Відшукування двосторонньої критичної області
- •Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей
- •Задачі до розділу 15.3
- •Розділ 15.4. Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона)
- •Методика обчислення теоретичних частот нормального розподілу
- •Розділ 15.5. Завдання до заняття 15
- •Розділ 1.6. Поняття кореляції
- •Розділ 16.2. Метод найменших квадратів (загальні поняття)
- •Розділ 16.3. Побудова рівняння лінійної функції
- •Розділ 16.4. Побудова рівняння квадратичної функції
- •Розділ 16.5. Побудова рівняння гіперболічної функції
- •Розділ 16.6. Побудова рівняння показникової функції
- •Розділ 16.7.Знаходження параметрів множинної лінійної залежності
- •Розділ 17.1. Кореляційна таблиця
- •Розділ 17.2. Відшукування параметрів вибіркового рівняння прямої лінії регресії по згрупованим даним
- •Розділ 17.3. Вибірковий коефіцієнт кореляції
- •Розділ 17.4. Завдання до заняття 17
- •Рекомендована література
- •Додатки
- •Значення функції
- •Значення функції
- •Розподіл Пірсона ( - Пірсона)
- •Основні поняття і терміни
- •Основні теореми і формули Класичне означення ймовірності появи події: .
- •Перестановки: . Сполучення: .
Розділ 6.2. Закон розподілу дискретної випадкової величини
Нехай дискретна випадкова величина Х може приймати n значень:
х1, х2,..., хn. Будемо вважати, що всі вони різні (в інакшому випадку їх потрібно об’єднати). Крім того, будемо вважати, що вони розміщені у зростаючому порядку.
Для
повної характеристики дискретної
випадкової величини, крім переліку всіх
її можливих значень, повинні задаватись
ймовірності
,
які відповідають цим можливим значенням.
Означення: Законом розподілу дискретної випадкової величини називається відповідність між можливими значеннями і їх ймовірностями.
Закон розподілу дискретної випадкової величини можна задавати таблично, аналітично (у вигляді формули) і графічно (у вигляді багатокутника розподілу).
Найбільш зручним є табличний спосіб задання
Таблиця 1
Значення випадкової величини Х |
|
|
... |
|
... |
|
Ймовірність Р |
|
|
... |
|
... |
|
Таблиця 1 є таблицею розподілу дискретної випадкової величини, її також називають законом розподілу дискретної випадкової величини.
Події х1, х2, ..., хn є несумісними і єдино можливими, тобто вони утворюють повну групу, тому сума їх ймовірностей дорівнює одиниці
.
(6.1)
Ймовірності
обчислюються або за даним значенням
випадкової величини
,
або даються за відомим законом розподілу
.
Приклад:
В грошовій лотереї розігрується 1000 білетів. Розігрується один виграш у 100 грн., 10 – по 20 грн., 20 – по 10 грн., 100 – по 1 грн. Випадковою величиною Х є вартість можливого виграшу власника одного лотерейного білета. Скласти закон розподілу випадкової величини Х.
Рішення
Випадкова величина Х може приймати значення: {0, 1, 10, 20, 100}. Відповідні ймовірності у даному випадку можна знайти за класичним означенням ймовірності появи події (формула 1.1 заняття 1)
Отже, знаходимо при
Закон розподілу даної випадкової величини має вигляд
Х |
0 |
1 |
10 |
20 |
100 |
Р |
0,869 |
0,100 |
0,020 |
0,010 |
0,001 |
Задачі до розділу 6.2
Задача 6.2.1
Партія із 8 виробів вміщує 5 стандартних. Навмання відбирають 3 вироби. Скласти таблицю закону розподілу числа стандартних виробів серед відібраних.
Рішення
Перелічимо всі можливі значення дискретної випадкової величини Х – числа стандартних виробів серед відібраних Х:{0, 1, 2, 3}. За формулою (1.5) заняття 1 знайдемо ймовірності кожного значення дискретної випадкової величини
Зробимо
перевірку:
Таким чином, закон розподілу ймовірностей дискретної випадкової величини Х набуде вигляду
-
Х
0
1
2
3
Р
Задача 6.2.2
Пристрій складається з п’яти незалежно працюючих елементів. Ймовірність відмови кожного елементу однакова і дорівнює 0,3. Скласти закон розподілу числа працюючих елементів.
Рішення
Перелічимо
всі можливі значення дискретної
випадкової величини Х
–
числа працюючих елементів Х:{0,
1, 2, 3, 4, 5}.
Оскільки ймовірність відмови кожного
елементу однакова, то і ймовірність
безперебійної роботи однакова і дорівнює
Відповідні ймовірності у законі розподілу
знайдемо за формулою Бернуллі (формула
4.1 заняття 4)
Таким чином, закон розподілу ймовірностей дискретної випадкової величини Х набуде вигляду
-
Х
0
1
2
3
4
5
Р
0,00243
0,02835
0,1323
0,3087
0,36015
0,16807
Задача 6.2.3
Два гральні кубики одночасно підкидають два рази. Написати закон розподілу дискретної випадкової величини Х – кількості появи непарного числа очок на верхній грані кожного кубика.
Задача 6.2.4
Ймовірність одержання задатку при заключенні кожного договору дорівнює 0,6. Заключено 8 договори. Знайти закон розподілу випадкової величини Х – кількості одержаних задатків .
Задача 6.2.5
У партії з 10 телефонних апаратів є 4 несправні. Навмання відібрано 3 апарати. Скласти ряд розподілу дискретної випадкової величини Х – кількості справних апаратів серед відібраних.
