- •Теорія ймовірностей і математична статистика для економістів
- •Розділ 1.1. Види подій
- •Види випадкових подій
- •Розділ 1.2. Класичне означення ймовірності появи події
- •Рішення
- •Властивості ймовірності
- •Задачі до розділу 1.2
- •Розділ 1.3. Елементи комбінаторики
- •Розміщення
- •Рішення
- •Перестановки
- •Рішення
- •Рішення
- •Сполучення
- •Рішення
- •Розділ 1.4. Знаходження ймовірності появи події з застосуванням елементів комбінаторики
- •Рішення
- •Задачі до розділу 1.4
- •Розділ 1.5. Статистична ймовірність
- •Розділ 2.1. Теорема додавання ймовірностей несумісних подій
- •Рішення
- •Рішення
- •Задачі до розділу 2.1
- •Розділ 2.2. Ймовірність повної групи подій. Протилежні події
- •Розділ 2.3. Множення ймовірностей
- •Умовна ймовірність
- •Задачі до розділу 2.3
- •Розділ 2.4. Теорема додавання ймовірностей сумісних подій
- •Розділ 2.5. Завдання до заняття 2
- •Розділ 3.1. Ймовірність появи хоча б однієї події
- •Задачі до розділу 3.1
- •Розділ 3.2. Формула повної ймовірності
- •Задачі до розділу 3.2
- •Розділ 3.3. Ймовірність гіпотез. Формули Бейєса
- •Рішення
- •Задачі до розділу 3.3
- •Розділ 3.4. Завдання до заняття 3
- •Розділ 4.1. Формула Бернуллі
- •Рішення
- •Задачі до розділу 4.1
- •Розділ 4.2. Локальна теорема Лапласа
- •Рішення
- •Задачі до розділу 4.2
- •Розділ 4.3. Завдання до заняття 4 Теоретичні питання до заняття 4
- •Розділ 5.1. Інтегральна теорема Лапласа
- •Задачі до розділу 5.1 Задача 5.1.1
- •Розділ 5.2. Формула Пуассона
- •Задачі до розділу5.2
- •Розділ 5.3. Завдання до заняття 5 Теоретичні питання до заняття 5
- •Розділ 6.1. Дискретні і неперервні випадкові величини
- •Розділ 6.2. Закон розподілу дискретної випадкової величини
- •Задачі до розділу 6.2
- •Розділ 6.3. Математичне сподівання дискретної випадкової величини та її властивості
- •Задачі до розділу 6.3
- •Розділ 6.4. Завдання до заняття 6
- •Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини
- •Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення
- •Задачі до розділу 7.2
- •Розділ 7.3. Завдання до заняття 7
- •Розділ 8.1. Функція розподілу (інтегральна функція) та її властивості
- •Задачі до розділу 8.1
- •Розділ 8.2. Диференціальна функція розподілу та її властивості
- •Задачі до розділу 8.2
- •Розділ 8.3. Завдання до заняття 8
- •Розділ 9.1. Математичне сподівання неперервної випадкової величини
- •Задачі до розділу 9.1
- •Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини
- •Задачі до розділу 9.2
- •Розділ 9.3. Завдання до заняття 9
- •Розділ 10.1. Закони розподілу дискретних випадкових величин Біноміальний закон розподілу
- •Геометричний розподіл.
- •Задачі до розділу 10.1
- •Розділ 10.2. Закони розподілу неперервних випадкових величин Закон рівномірного розподілу ймовірностей.
- •Числові характеристики рівномірного розподілу
- •Нормальний розподіл (розподіл Гауса)
- •Задачі до розділу 10.2
- •Розділ 10.3. Завдання до заняття 10
- •Розділ 11.1. Предмет і задачі математичної статистики
- •Розділ 11.2. Емпірична функція розподілу
- •Властивості емпіричної функції
- •11.3. Графічна інтерпретація статистичного ряду
- •Розділ 11.4. Завдання до заняття 11
- •Розділ 12.1. Генеральна та вибіркова середні. Властивості середньої
- •Рішення
- •Властивості середньої
- •Розділ 12.2. Генеральна і вибіркова дисперсії та середнє квадратичне відхилення
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Рішення
- •Тоді за формулою (12.6) знайдемо дисперсію
- •Розділ 12.4. Завдання до заняття 12
- •Розділ 13.1. Коефіцієнт варіації
- •Рішення
- •Для знаходження середнього квадрата ознаки складемо таблицю
- •Розділ 13.2. Медіана варіаційного ряду
- •Розділ 13.3. Мода варіаційного ряду
- •Розділ 13.4. Асиметрія і ексцес
- •Моменти варіаційного ряду
- •Асиметрія і ексцес
- •Розділ 13.5. Завдання до заняття 13
- •Розділ 14.1. Метод добутків для обчислення вибіркової середньої і дисперсії
- •Розділ 14.2. Властивості статистичних оцінок параметрів розподілу. Оцінка генеральної дисперсії по виправленій вибірковій
- •Розділ 14.3. Точність оцінки. Довірча ймовірність. Довірчий інтервал
- •Задачі до розділу14.3
- •Розділ 14.4. Завдання до заняття 14
- •Розділ 15.1. Статистична гіпотеза (основні поняття)
- •Розділ 15.2. Критична область. Область приняття нульової гіпотези. Критична точка
- •Відшукування правосторонньої критичної області
- •Відшукування лівосторонньої критичної області
- •Відшукування двосторонньої критичної області
- •Розділ 15.3. Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей
- •Задачі до розділу 15.3
- •Розділ 15.4. Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона)
- •Методика обчислення теоретичних частот нормального розподілу
- •Розділ 15.5. Завдання до заняття 15
- •Розділ 1.6. Поняття кореляції
- •Розділ 16.2. Метод найменших квадратів (загальні поняття)
- •Розділ 16.3. Побудова рівняння лінійної функції
- •Розділ 16.4. Побудова рівняння квадратичної функції
- •Розділ 16.5. Побудова рівняння гіперболічної функції
- •Розділ 16.6. Побудова рівняння показникової функції
- •Розділ 16.7.Знаходження параметрів множинної лінійної залежності
- •Розділ 17.1. Кореляційна таблиця
- •Розділ 17.2. Відшукування параметрів вибіркового рівняння прямої лінії регресії по згрупованим даним
- •Розділ 17.3. Вибірковий коефіцієнт кореляції
- •Розділ 17.4. Завдання до заняття 17
- •Рекомендована література
- •Додатки
- •Значення функції
- •Значення функції
- •Розподіл Пірсона ( - Пірсона)
- •Основні поняття і терміни
- •Основні теореми і формули Класичне означення ймовірності появи події: .
- •Перестановки: . Сполучення: .
Розділ 5.1. Інтегральна теорема Лапласа
Теорема:
Якщо ймовірність р
появи
події А
в
кожному випробуванні постійна і відмінна
від нуля і одиниці, тоді ймовірність
того,
що подія А
відбудеться
у п
випробуваннях
від k1
до
k2
раз,
наближено дорівнює визначеному інтегралу
,
(5.1)
де
.
Позначимо
,
де
-
є непарною функцією, тобто
,
що знаходиться за допомогою таблиці
функції Лапласа, причому, якщо
,
тоді
.
Враховуючи вищевикладене одержуємо
.
Значить
.
(5.2)
Приклад:
Ймовірність виходу з ладу одного верстата за одну зміну дорівнює 0,2. Знайти ймовірність того, що протягом однієї зміни від 20 до 25 верстаті будуть працювати безвідмовно, якщо в цій зміні працює 30 верстатів.
Рішення
За таблицею функції Лапласа
Використовуючи формулу (5.2) маємо
Задачі до розділу 5.1 Задача 5.1.1
Ймовірність появи події в кожному з 100 незалежних випробуваннях однакова і дорівнює 0,8. Знайти ймовірність того, що подія з’явиться не менше 75 раз і не більше 90 раз.
Рішення
За
умовою задачі:
Оскільки п досить велике, то за
інтегральною теоремою Лапласа
,
.
Враховуючи, що функція Лапласа є непарною, тобто Ф(-х)=-Ф(х), маємо
Тоді за формулою (5.2) шукана ймовірність дорівнює
Задача 5.1.2
У страховій компанії 10 тис. клієнтів, які застрахували своє майно. Страховий внесок складає 2000 грн., ймовірність нещасного випадку р=0,005, страхова виплата клієнту у нещасному випадку складає 200 тис. грн. Визначити розмір прибутку страхової компанії з ймовірністю 0,95.
Рішення.
Нехай у – страхові виплати при нещасних випадках. Тоді прибуток компанії є різницею між сумою страхових внесків і сумою страхових виплат, тобто
.
Задача полягає у знаходженні такого числа N , для якого ймовірність нещасного випадку не перевищувала 1-р, іншими словами повинна виконуватися умова
.
Визначимо
значення аргументу функції Ф(х)
при
,
За
таблицею функції Лапласа знаходимо, що
тому що х>5.
За
формулою (5.2)
,
За
таблицею функції Лапласа, при значенні
знаходимо
.
Тоді
У цьому випадку можна вважати, що з ймовірністю 0,95 страховій компанії гарантується прибуток
.
Задача 5.1.3
Обчислити ймовірність появи події А від 50 до 70 раз в 95 випробуваннях, якщо ймовірність появи події у кожному випробуванні однакова і дорівнює 0,7.
Задача 5.1.4
Обчислити ймовірність появи події А від 60 до 65 рази в 75 випробуваннях, якщо ймовірність появи події у кожному випробуванні однакова і дорівнює 0,8.
Задача 5.1.5
Ймовірність появи події дорівнює 0,7 у кожному з 2100 незалежних випробувань. Знайти ймовірність появи події: а) не менше 1470 раз; б) не менше 1470 і не більше 1500 раз; в) не більше 1469 раз.
Задача 5.1.6
Банк надає кредит населенню і має 1000 клієнтів. Кожному з клієнтів надається кредит 50000 грн. при умові повернення 110% від цієї суми. Ймовірність неповернення кредиту кожним з клієнтів у середньому складає 0,01. Який прибуток гарантується банку з ймовірністю 0,9?
