Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекцій теор.ймов.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
6.2 Mб
Скачать

Розділ 3.4. Завдання до заняття 3

Теоретичні питання до розділу 3

  1. Сформулювати теорему про ймовірність появи хоча б однієї події.

  2. Які події утворюють повну групу?

  3. Сформулювати теорему про повну ймовірність.

  4. Що ви розумієте під терміном „гіпотеза”.

  5. Записати формулу Бейєса та пояснити її складові.

Розділ 4.1. Формула Бернуллі

Нехай виконується п незалежних випробувань, в кожному з яких подія А може з’явитися або ні. Ймовірність появи події А в кожному випробуванні однакова і дорівнює р. Відповідно, ймовірність того, що подія А не з’явиться в кожному випробуванні також постійна і дорівнює .

Необхідно визначити ймовірність того, що при п випробуваннях подія А з’явиться рівно раз, тобто не з’явиться раз, причому не має значення у якій послідовності з’являється подія А. Наприклад, подія А з’явиться 3 рази у 4-х випробуваннях: .

Позначимо шукану ймовірність ймовірність однієї складної події, яка полягає в тому, що в п випробуваннях подія А з’явиться рівно раз і не з’явиться раз, тоді за теоремою множення ймовірностей незалежних подій вона дорівнює . Таких складних подій може бути стільки, скільки можна скласти сполучень з п елементів по k елементах, тобто . Оскільки ці складні події несумісні, тому за теоремою додавання ймовірностей несумісних подій, шукана ймовірність дорівнює сумі ймовірностей всіх можливих складних подій. Оскільки всі складові однакові, то шукана ймовірність дорівнює ймовірності однієї складної події, помноженої на їх кількість.

, (4.1)

або

.

Приклад:

Ймовірність того, що витрати електроенергії впродовж однієї доби не перевищать встановленої норми, дорівнює 0,8. Знайти ймовірність того, що найближчі 6 діб витрати електроенергії протягом 4 будь-яких діб не перевищать норми.

Рішення

Задачі до розділу 4.1

Задача 4.1.1

В ящику 30 виробів: 20 стандартних і 10 підвищеної якості. Витягли підряд 4 вироба, причому кожний вироб повертали назад до ящика перед вилученням другого і вироби в ящику змішувалися. Яка ймовірність того, що серед вилучених 4 виробів будуть 2 стандартні?

Рішення

Ймовірність вилучення стандартного виробу можна вважати однаковою у всіх чотирьох випробуваннях. Тоді ймовірність протилежної події (вилучення виробу підвищеної якості) дорівнює . Використовуючи формулу Бернуллі (4.1), одержимо:

Задача 4.1.2

Ймовірність появи події А дорівнює 0,4. Яка ймовірність того, що при 10 випробуваннях подія А з’явиться не більше 3 раз?

Рішення.

З умови задачі:

Ймовірність появи події А 0 раз:

Ймовірність появи події А 1 раз:

Ймовірність появи події А 2 рази:

Ймовірність появи події А 3 рази:

Ймовірність того, що подія А з’явиться не більше 3 раз, визначається із виразу

Задача 4.1.3

Обчислити ймовірність появи події А рівно 3 рази у 7 випробуваннях, якщо ймовірність появи події у кожному випробуванні однакова і дорівнює 0,6.

Задача 4.1.4

Ймовірність купівлі одиниці бракованого товару дорівнює 0,1. Знайти ймовірність того, що з 7 куплених одиниць товару 5 буде без браку.

Задача 4.1.5

Визначити ймовірність того, що у родині, яка має шестеро дітей, буде 2 хлопчика і чотири дівчинки. Ймовірність народження хлопчика вважати рівною 0,51.

Задача 4.1.6

Два рівносильних гравця грають у шахи. Що є більш вірогідним:

а) виграти одну партію з двох або дві партії з чотирьох?

б) виграти не менше двох партій з чотирьох або не менше трьох партій з п’яти? Вважати, що нічийний результат не береться до уваги.

Задача 4.1.7

Пристрій складається з трьох основних незалежно працюючих елементів. Пристрій не працює, якщо відмовиться працювати хоча б один його елемент. Ймовірність відмови кожного елемента за певний час дорівнює 0,2. Знайти ймовірність безвідмовної роботи пристрою за певний час, якщо:

а) працюють тільки основні елементи;

б) підключено один резервний елемент;

в) підключено два резервних елемента.

Припускається, що резервні елементи працюють у тому ж режимі, що і основні. Ймовірність відмови кожного резервного елемента дорівнює 0,2 і пристрій не працює, коли працює менше трьох елементів.