Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекцій теор.ймов.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
6.2 Mб
Скачать

Розділ 3.3. Ймовірність гіпотез. Формули Бейєса

Нехай проведено випробування за результатами якого з’явилася подія А . Знайдемо умовні ймовірності (ймовірність того, що подія відбудеться, якщо подія А вже відбулася). Наприклад, для події

,

,

де - повна ймовірність.

У загальному вигляді

, (3.4)

де

Одержану формулу (3.4) називають формулою Бейєса (за ім’ям англійського математика, який вивів цю формулу і опублікував у 1764 році). Формула Бейєса дозволяє переоцінити ймовірність гіпотез після того, як стане відомим результат випробування, тобто з’явиться подія А.

Наприклад: Деталі, що виготовляє цех заводу попадають на перевірку на стандартність до одного з двох контролерів. Ймовірність того, що деталь попаде до першого контролера, дорівнює 0,55, а до другого – 0,45. Ймовірність того, що деталь буде названо стандартною першим контролером – 0,95, а другим – 0,98. Деталь при перевірці було названо стандартною. Знайти ймовірність того, що цю деталь перевірив перший контролер.

Рішення

Подія А – деталь названо стандартною.

Маємо дві гіпотези: - деталь перевірив перший контролер;

- деталь перевірив другий контролер.

Подія - ймовірність того, що стандартну деталь перевірив перший контролер.

Подія - ймовірність того, що стандартну деталь перевірив другий контролер.

Тоді формула (3.4) набуде вигляду:

,

Задачі до розділу 3.3

Задача 3.3.1

Уздовж бензоколонки проїжджає 60% легкових автомобілів і 40% вантажних автомобілів. Ймовірність того, що заправлятиметься вантажна машина 0,1, для легкової машини ця ймовірність дорівнює 0,2. До бензоколонки під’їхала машина для заправки. Знайти ймовірність того, що це буде вантажна машина.

Рішення

Подія А – до бензоколонки під’їхала для заправки машина.

Можна висунути дві гіпотези:

- машина легкова;

- машина вантажна.

Тоді, , .

Умовна ймовірність того, що заправлятиметься легкова машина:

.

Умовна ймовірність того, що заправлятиметься вантажна машина:

.

Ймовірність того, що до бензоколонки під’їхала для заправки машина, знаходимо за формулою повної ймовірності

,

.

Шукану ймовірність, що для заправки під’їде вантажна машина, знайдемо за формулою Бейєса

,

.

Задача 3.3.2

У крамниці для продажу є 15 рушниць, з яких 5 з оптичним прицілом. Ймовірність того, що стрілець влучить у мішень з рушниці з оптичним прицілом 0,95, для рушниці без оптичного прицілу ця ймовірність дорівнює 0,8. Стрілець влучив у мішень з навмання купленої рушниці. Знайти ймовірність того, що стрілець стріляв з рушниці без оптичного прицілу.

Задача 3.3.3

У наявності є три партії деталей по 30 деталей в кожній. Число стандартних деталей у першій, другій і третій партіях відповідно дорівнює 20, 15 і 10. Із навмання обраної партії навмання вилучено деталь, яка виявилася стандартною. Знайти ймовірність того, що деталь було вилучено із третьої партії.