
Ионная связь. Ионные кристаллы
Химическая связь может возникнуть при электростатическом притяжении двух разноименных ионов - катиона и аниона, например, K+ и I−. Перекрывание атомных орбиталей в этом случае незначительно, и электронная плотность распределена неравномерно, недостаток её будет у атома калия, а избыток - у атома иода.
Ионную связь (K+)−(I−) рассматривают как предельный случай ковалентной связи.
|
Общая пара электронов в случае ионной связи практически полностью смещена к аниону. Обычно это происходит в соединениях элементов с большой разностью электроотрицательности (например, в соединениях CsF, NaBr, K2O, Rb2S, Li3N и др.). Все эти соединения при обычных условиях представляют собой ионные кристаллы (кристаллы, построенные из катионов и анионов), например кристаллы иодида калия или хлорида натрия. |
Металлическая связь. Металлические кристаллы
В
металлах валентные электроны удерживаются
атомами крайне слабо и способны
мигрировать. Атомы, оставшиеся без
внешних электронов, приобретают
положительный заряд. Они образуют металлическую
кристаллическую решётку.
Совокупность обобществлённых валентных электронов (электронный газ), заряженных отрицательно, удерживает положительные ионы металла в определённых точках пространства - узлах кристаллической решётки, например, металла серебро.
Внешние электроны могут свободно и хаотично перемещаться, поэтому металлы характеризуются высокойэлектропроводностью (особенно золото, серебро, медь, алюминий).
Атомные и молекулярные кристаллы
В твердом агрегатном состоянии у веществ могут образоваться не только ионные, но также молекулярные и атомные кристаллические решетки.
|
Так, твердый иод имеют молекулярную кристаллическую решетку, в узлах которых находятся молекулы I2. Аналогичным образом построена кристаллическая решетка твердого диоксида углерода (сухой лед) - в узлах кристаллической решетки находятся молекулы CO2. |
Алмаз и графит - кристаллы с атомной решеткой, имеющей в узлах атомы углерода с разным расположением этих узлов в пространстве.
|
|
Водородная связь
При изучении многих веществ были обнаружены так называемые водородные связи.
Например, молекулы HF в жидком фтороводороде связаны между собой водородной связью, аналогично связаны молекулы Н2О в жидкой водеили в кристалле льда, а также молекулы NH3 и Н2О между собой в межмолекулярном соединении - гидрате аммиака NH3 · Н2О.
|
Водородная связь образуется за счёт сил электростатического притяжения водородсодержащих полярных молекул, содержащих атомы наиболее электроотрицательных элементов - F, O, N. Например, водородные связи имеются в HF, Н2О, NH3, но их нет в HCl, Н2S, PH3. Водородные связи малоустойчивы и разрушаются довольно легко (например при плавлении льда, кипении воды). Однако на разрыв этих связей затрачивается некоторая дополнительная энергия, и поэтому температуры плавления и кипения веществ с водородными связями между молекулами оказываются значительно выше, чем у подобных веществ, но без водородных связей: |