
- •Курс физики электричество и магнетизм
- •Оренбург 2006
- •Содержание
- •Глава 1 Электрическое поле в вакууме
- •§ 1.1 Закон сохранения электрического заряда
- •§ 1.2 Закон Кулона
- •§ 1.3 Электростатическое поле. Напряженность электростатического поля
- •§ 1.4 Потенциал. Связь между потенциалом и напряженностью электрического поля
- •§ 1.5 Электрический диполь
- •§ 1.6 Теорема Остроградского Гаусса
- •Глава 2 Электрическое поле в диэлектриках
- •§ 2.7 Поляризация диэлектриков
- •§ 2.8 Поляризованность. Напряженность поля в диэлектрике
- •§ 2.9 Электрическое смещение. Теорема Остроградского – Гаусса для электростатического поля в диэлектрике
- •§ 2.10 Условия на границе раздела двух диэлектрических сред
- •§ 2.11 Сегнетоэлектрики
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 3 Энергия электрического поля
- •§ 3.12 Электроемкость
- •§ 3.13 Конденсаторы
- •§ 3.14 Соединение конденсаторов
- •§ 3.15 Энергия электрического поля
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 4 Постоянный электрический ток
- •§ 4.16 Электрический ток
- •§ 4.17 Сторонние силы. Электродвижущая сила и напряжение
- •§ 4.18 Закон Ома. Сопротивление проводников
- •§ 4.19 Разветвленные цепи. Правила Кирхгофа
- •§ 4.20 Работа и мощность тока. Закон Джоуля – Ленца
- •Глава 5 Магнитное поле
- •§ 5.21 Магнитное поле и его характеристики
- •§ 5.22 Закон Био-Савара-Лапласа
- •§ 5.23 Магнитное поле движущегося заряда
- •§ 5.24 Закон Ампера. Сила Лоренца
- •§ 5.25 Работа при перемещении контура с током в постоянном магнитном поле
- •Глава 6 Электромагнитная индукция
- •§ 6.26 Явление электромагнитной индукции
- •§ 6.27 Закон электромагнитной индукции (закон Фарадея)
- •§ 6.28 Генератор переменного тока
- •§ 6.29 Вихревые токи (токи Фуко)
- •§ 6.30 Явление самоиндукции. Индуктивность
- •§ 6.31 Взаимная индукция
- •§ 6.32 Энергия магнитного поля
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 7 Магнитные свойства вещества
- •§ 7.33 Магнитные моменты электронов и атомов
- •§ 7.34 Диа- и парамагнетизм
- •§ 7.35 Намагничивание магнетика
- •§ 7.36 Циркуляция вектора магнитной индукции
- •§ 7.37 Условия на границе раздела двух магнетиков
- •§ 7.38 Ферромагнетизм
- •§ 7.39 О теории ферромагнетизма
- •Глава 8 Уравнения Максвелла
- •§ 8.40 Вихревое электрическое поле
- •§ 8.41 Ток смещения
- •§ 8.42 Уравнения Максвелла для электромагнитного поля
- •§ 43 Относительность электрического и магнитного полей
- •Глава 9 Электрические колебания
- •§ 9.44 Квазистационарные токи
- •§ 9.45 Колебательный контур
- •§ 9.46 Свободные затухающие колебания
- •§ 9.47 Вынужденные электрические колебания
- •§ 9.48 Мощность, выделяемая в цепи переменного тока
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 10 Контрольная работа § 10.1 Общие методические указания к решению задач и выполнению контрольных работ
- •§ 10.2 Контрольные задачи
- •Глава 11 Экзамены
- •§ 11. 1 Общие положения
- •§ 11. 2 Экзаменационные тестовые задания
- •Глава 12 Примеры решения задач
- •Литература, рекомендуемая для изучения физики
- •Список использованных источников
- •Приложение а (справочное) Основные физические константы
- •Приложение в (справочное)
Глава 8 Уравнения Максвелла
Между электрическими и магнитными полями существует глубокая внутренняя связь, изменяющееся магнитное поле вызывает появление электрического поля, и изменяющееся электрическое поле вызывает появление магнитного поля. Эту связь открыл во второй половине 19 века Максвелл, который развил общую теорию электромагнитного поля в покоящихся средах. Теория Максвелла позволяет с единой точки зрения охватить всю совокупность свойств электрических и магнитных полей. В этой главе мы рассмотрим основные идеи этой теории.
§ 8.40 Вихревое электрическое поле
Из закона Фарадея (см. (27.2)) Ei = dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению электродвижущей силы индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение ЭДС электромагнитной индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Однако ЭДС в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы силы неэлектростатического происхождения (см. § 4.17). Поэтому возникает вопрос о природе сторонних сил в данном случае.
Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре; их возникновение также нельзя объяснить силами Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлениям Максвелла, контур, в котором появляется ЭДС индукции, играет второстепенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле. Под действием поля электроны проводимости в контуре приходят в движение и возникает индукционный ток.
Итак, по Максвеллу, изменяющееся во
времени магнитное поле порождает
электрическое поле
,
циркуляция которого согласно (27.7):
=
=
,
(40.1)
где ЕBl проекция вектора на направление .
Подставив в формулу (40.1) выражение Ф = = (см. (25.2)), получим
=
.
Если поверхность и контур неподвижны, то операции дифференцирования и интегрирования можно поменять местами. Следовательно,
=
.
(40.2)
В связи с тем, что вектор зависит, вообще говоря, как от времени, так и от координат, мы написали под знаком интеграла символ частной производной по времени (интеграл является функцией только от времени).
Согласно (4.5), циркуляция вектора
напряженности электростатического
поля (обозначим его
)
вдоль любого замкнутого контура равна
нулю:
=
=0.
(40.3)
Сравнивая выражения (40.1) и (40.3), видим, что между рассматриваемыми полями ( и ) имеется принципиальное различие: циркуляция вектора в отличие от циркуляции вектора не равна нулю. Следовательно, электрическое поле , возбуждаемое магнитным полем, как и само магнитное поле является вихревым (см. § 7.36).
Полученный результат составляет первое основное положение теории Максвелла: переменное магнитное поле вызывает вихревое электрическое поле.