
- •Курс физики электричество и магнетизм
- •Оренбург 2006
- •Содержание
- •Глава 1 Электрическое поле в вакууме
- •§ 1.1 Закон сохранения электрического заряда
- •§ 1.2 Закон Кулона
- •§ 1.3 Электростатическое поле. Напряженность электростатического поля
- •§ 1.4 Потенциал. Связь между потенциалом и напряженностью электрического поля
- •§ 1.5 Электрический диполь
- •§ 1.6 Теорема Остроградского Гаусса
- •Глава 2 Электрическое поле в диэлектриках
- •§ 2.7 Поляризация диэлектриков
- •§ 2.8 Поляризованность. Напряженность поля в диэлектрике
- •§ 2.9 Электрическое смещение. Теорема Остроградского – Гаусса для электростатического поля в диэлектрике
- •§ 2.10 Условия на границе раздела двух диэлектрических сред
- •§ 2.11 Сегнетоэлектрики
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 3 Энергия электрического поля
- •§ 3.12 Электроемкость
- •§ 3.13 Конденсаторы
- •§ 3.14 Соединение конденсаторов
- •§ 3.15 Энергия электрического поля
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 4 Постоянный электрический ток
- •§ 4.16 Электрический ток
- •§ 4.17 Сторонние силы. Электродвижущая сила и напряжение
- •§ 4.18 Закон Ома. Сопротивление проводников
- •§ 4.19 Разветвленные цепи. Правила Кирхгофа
- •§ 4.20 Работа и мощность тока. Закон Джоуля – Ленца
- •Глава 5 Магнитное поле
- •§ 5.21 Магнитное поле и его характеристики
- •§ 5.22 Закон Био-Савара-Лапласа
- •§ 5.23 Магнитное поле движущегося заряда
- •§ 5.24 Закон Ампера. Сила Лоренца
- •§ 5.25 Работа при перемещении контура с током в постоянном магнитном поле
- •Глава 6 Электромагнитная индукция
- •§ 6.26 Явление электромагнитной индукции
- •§ 6.27 Закон электромагнитной индукции (закон Фарадея)
- •§ 6.28 Генератор переменного тока
- •§ 6.29 Вихревые токи (токи Фуко)
- •§ 6.30 Явление самоиндукции. Индуктивность
- •§ 6.31 Взаимная индукция
- •§ 6.32 Энергия магнитного поля
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 7 Магнитные свойства вещества
- •§ 7.33 Магнитные моменты электронов и атомов
- •§ 7.34 Диа- и парамагнетизм
- •§ 7.35 Намагничивание магнетика
- •§ 7.36 Циркуляция вектора магнитной индукции
- •§ 7.37 Условия на границе раздела двух магнетиков
- •§ 7.38 Ферромагнетизм
- •§ 7.39 О теории ферромагнетизма
- •Глава 8 Уравнения Максвелла
- •§ 8.40 Вихревое электрическое поле
- •§ 8.41 Ток смещения
- •§ 8.42 Уравнения Максвелла для электромагнитного поля
- •§ 43 Относительность электрического и магнитного полей
- •Глава 9 Электрические колебания
- •§ 9.44 Квазистационарные токи
- •§ 9.45 Колебательный контур
- •§ 9.46 Свободные затухающие колебания
- •§ 9.47 Вынужденные электрические колебания
- •§ 9.48 Мощность, выделяемая в цепи переменного тока
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 10 Контрольная работа § 10.1 Общие методические указания к решению задач и выполнению контрольных работ
- •§ 10.2 Контрольные задачи
- •Глава 11 Экзамены
- •§ 11. 1 Общие положения
- •§ 11. 2 Экзаменационные тестовые задания
- •Глава 12 Примеры решения задач
- •Литература, рекомендуемая для изучения физики
- •Список использованных источников
- •Приложение а (справочное) Основные физические константы
- •Приложение в (справочное)
§ 5.23 Магнитное поле движущегося заряда
Каждый проводник с током создает в окружающем пространстве магнитное поле. Электрический же ток представляет собой упорядоченное движение электрических зарядов. Поэтому можно сказать, что любой движущийся в вакууме или среде заряд создает вокруг себя магнитное поле. Из формулы (22.2) легко получить выражение для магнитной индукции поля, создаваемого точечным зарядом q, движущимся со скоростью . Допустим, что ток создается носителями с зарядом е (знак безразличен), скорость упорядоченного движения которых равна . Тогда
I = jS = nevS, (23.1)
где S – площадь поперечного сечения проводника, n – концентрация носителей тока (число носителей тока в единице объема).
Подставим выражение (23.1) в формулу (22.2):
=
.
(23.2)
Учитывая, что векторы е и совпадают по направлению, заменим еv на е dl. Тогда формула (23.2) примет вид
=
,
(23.3)
так как скалярные множители можно вносить и выносить за знак векторного произведения от любого множителя векторного произведения (свойство векторного произведения).
Произведение Sdl соответствует объему отрезка провода длины dl, а nSdl равно числу носителей тока, содержащихся в этом объеме. Следовательно, разделив выражение (23.3) на nSdl, найдем магнитную индукцию поля, создаваемого зарядом е, движущимся со скоростью в вакууме (в воздухе). Заменив е на q, получим
=
,
(23.4)
г
де
радиус-вектор,
проведенный от заряда q
к точке поля, r
его модуль,
угол между векторами
и
(рисунок 32).
Согласно выражению (23.4), вектор направлен перпендикулярно плоскости, в которой расположены векторы и , а его направление совпадает с направлением поступательного движения правого винта при его вращении от к . Модуль магнитной индукции (23.4) вычисляется по формуле:
В =
.
(23.5)
Приведенные соотношения (23.4) и (23.5) справедливы лишь при малых скоростях v (v << с, с – скорость света в вакууме) движущихся зарядов, когда электрическое поле свободно движущегося заряда можно считать электростатическим, т. е. создаваемым неподвижным зарядом, находящимся в той точке, где в данный момент времени находится движущийся заряд.
Формула (23.4) определяет магнитную индукцию положительного заряда, движущегося со скоростью . Если движется отрицательный заряд, то q надо заменить на -q. Скорость относительная скорость, т. е. скорость относительно наблюдателя. Вектор в рассматриваемой системе отсчета зависит как от времени, так и от положения точки наблюдения. Поэтому следует подчеркнуть относительный характер магнитного поля движущегося заряда.
Впервые поле движущегося заряда удалось обнаружить американскому физику Г. Роуланду (18481901). Окончательно этот факт был установлен профессором Московского университета А. А. Эйхенвальдом (18631944), изучившим магнитное поле конвекционного тока, а также магнитное поле связанных зарядов поляризованного диэлектрика. Магнитное поле свободно движущихся зарядов было измерено академиком А. Ф. Иоффе, доказавшим, что электронный пучок и ток проводимости эквивалентны с точки зрения образования магнитного поля.