
- •Курс физики электричество и магнетизм
- •Оренбург 2006
- •Содержание
- •Глава 1 Электрическое поле в вакууме
- •§ 1.1 Закон сохранения электрического заряда
- •§ 1.2 Закон Кулона
- •§ 1.3 Электростатическое поле. Напряженность электростатического поля
- •§ 1.4 Потенциал. Связь между потенциалом и напряженностью электрического поля
- •§ 1.5 Электрический диполь
- •§ 1.6 Теорема Остроградского Гаусса
- •Глава 2 Электрическое поле в диэлектриках
- •§ 2.7 Поляризация диэлектриков
- •§ 2.8 Поляризованность. Напряженность поля в диэлектрике
- •§ 2.9 Электрическое смещение. Теорема Остроградского – Гаусса для электростатического поля в диэлектрике
- •§ 2.10 Условия на границе раздела двух диэлектрических сред
- •§ 2.11 Сегнетоэлектрики
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 3 Энергия электрического поля
- •§ 3.12 Электроемкость
- •§ 3.13 Конденсаторы
- •§ 3.14 Соединение конденсаторов
- •§ 3.15 Энергия электрического поля
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 4 Постоянный электрический ток
- •§ 4.16 Электрический ток
- •§ 4.17 Сторонние силы. Электродвижущая сила и напряжение
- •§ 4.18 Закон Ома. Сопротивление проводников
- •§ 4.19 Разветвленные цепи. Правила Кирхгофа
- •§ 4.20 Работа и мощность тока. Закон Джоуля – Ленца
- •Глава 5 Магнитное поле
- •§ 5.21 Магнитное поле и его характеристики
- •§ 5.22 Закон Био-Савара-Лапласа
- •§ 5.23 Магнитное поле движущегося заряда
- •§ 5.24 Закон Ампера. Сила Лоренца
- •§ 5.25 Работа при перемещении контура с током в постоянном магнитном поле
- •Глава 6 Электромагнитная индукция
- •§ 6.26 Явление электромагнитной индукции
- •§ 6.27 Закон электромагнитной индукции (закон Фарадея)
- •§ 6.28 Генератор переменного тока
- •§ 6.29 Вихревые токи (токи Фуко)
- •§ 6.30 Явление самоиндукции. Индуктивность
- •§ 6.31 Взаимная индукция
- •§ 6.32 Энергия магнитного поля
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 7 Магнитные свойства вещества
- •§ 7.33 Магнитные моменты электронов и атомов
- •§ 7.34 Диа- и парамагнетизм
- •§ 7.35 Намагничивание магнетика
- •§ 7.36 Циркуляция вектора магнитной индукции
- •§ 7.37 Условия на границе раздела двух магнетиков
- •§ 7.38 Ферромагнетизм
- •§ 7.39 О теории ферромагнетизма
- •Глава 8 Уравнения Максвелла
- •§ 8.40 Вихревое электрическое поле
- •§ 8.41 Ток смещения
- •§ 8.42 Уравнения Максвелла для электромагнитного поля
- •§ 43 Относительность электрического и магнитного полей
- •Глава 9 Электрические колебания
- •§ 9.44 Квазистационарные токи
- •§ 9.45 Колебательный контур
- •§ 9.46 Свободные затухающие колебания
- •§ 9.47 Вынужденные электрические колебания
- •§ 9.48 Мощность, выделяемая в цепи переменного тока
- •Верные ответы в заданиях отмечены красным цветом.
- •Глава 10 Контрольная работа § 10.1 Общие методические указания к решению задач и выполнению контрольных работ
- •§ 10.2 Контрольные задачи
- •Глава 11 Экзамены
- •§ 11. 1 Общие положения
- •§ 11. 2 Экзаменационные тестовые задания
- •Глава 12 Примеры решения задач
- •Литература, рекомендуемая для изучения физики
- •Список использованных источников
- •Приложение а (справочное) Основные физические константы
- •Приложение в (справочное)
§ 2.9 Электрическое смещение. Теорема Остроградского – Гаусса для электростатического поля в диэлектрике
Напряженность электростатического поля, согласно (8.6), зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна . Вектор напряженности , переходя через границу раздела диэлектриков, претерпевает скачкообразное изменение, создавая тем самым неудобства при расчете электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще вектором электрического смещения, который для электрически изотропной среды по определению равен
=
0
.
(9.1)
Так как =æ0 , =1+æ, то
= 0 = (1+æ) 0 =0 + æ0 =0 + . (9.2)
Единицы измерения электрического смещения и поляризованности кулон на метр в квадрате (Кл/м2).
Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором напряженности , зависящим от свойств диэлектрика. Вектором описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать, однако, перераспределение свободных зарядов, создающих поле. Поэтому вектор характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.
Аналогично, как и поле , поле изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности (см. § 1.3).
Линии вектора могут начинаться и заканчиваться на любых зарядах свободных и связанных, в то время как линии вектора только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора проходят не прерываясь.
Для произвольной замкнутой поверхности S поток вектора сквозь эту поверхность равен
ФD=
=
.
(9.3)
Теорема Остроградского Гаусса для электростатического поля в диэлектрике:
=
=
.
(9.4)
т. е. поток вектора электрического смещения сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме записи теорема Остроградского Гаусса справедлива для электростатического поля не только для вакуума, но и для неоднородной среды, т.е. при наличии диэлектрика.
Из (9.2) мы видим, что вектор представляет сумму двух совершенно разнородных величин: 0 и . Поэтому вектор вспомогательный вектор, не имеющий какого-либо глубокого физического смысла. Его введение во многих случаях значительно упрощает изучение поля в диэлектриках. Например, из (9.4) мы видим, что поток вектора через замкнутую поверхность определяется только свободными зарядами. В вакууме (=1) векторы и связаны соотношением = 0 = 0 (см. (8.8) и (9.1)).