Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
190600.62_УиТО ЭСА_лабор_раб.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
592.38 Кб
Скачать

Лабораторная работа № 8 электромагнитные форсунки

Электромагнитные форсунки осуществляют впрыск топлива во всасывающий тракт двигателя и являются наиболее ответственными узлами системы впрыска, а их работа связана с одновременно протекающими гидромеханическими и электромагнитными процессами.

Форсунки открываются по сигналу системы управления двигателем и осуществляют дозированное распыливание топлива. Обычно, форсунки имеют оригинальную конструкция для каждой модели двигателя, в который они установлены, в связи с чем их конструктивные исполнения отличаются большим разнообразием.

Работа форсунки осуществляется в импульсном режиме при частоте срабатывания от 10 до 200 Гц в условиях повышенных температур и вибрации. При этом к ним предъявляются достаточно высокие требования по точности дозирования – не хуже 2‑5 % на протяжении всего срока службы. Т.е. форсунка в среднем должна за все время работы произвести около 600 млн. срабатываний. Это очень большое число для электромеханического устройства.

Сигнал на начало впрыскивания топлива подается на катушку индуктивности  (обмотку) 5 электромагнита.

9

8

Конструктивная схема электромагнитной топливной форсунки:

  1. Запорный элемент.

  2. Упор.

  3. Якорь электромагнита.

  4. Корпус форсунки.

  5. Обмотка электромагнита.

  6. Пружина возврата.

  7. Электрические контакты.

  8. Топливный штуцер.

  9. Топливо.

  10. Седло

7

6

5

4

3

2

1

10

В корпусе 4 размещен также запорный элемент 1, образующий вместе с седлом 10 клапан. Запорный элемент 1 прижат к седлу 10 пружиной возврата .

Когда на обмотку 5 через контакты 7 подается электрический сигнал в виде прямоугольного импульса определенной продолжительности, в обмотке 5 образуется электромагнитное поле, преодолевающее усилие пружины 6 и втягивающее якорь 3, а вместе с ним и закрепленный на якоре 3 запорный элемент 1. При этом последний отодвигается от седла 10, между ними образуется зазор, через который топливо под давлением впрыскивается во впускной тракт двигателя. После прекращения действия электрического сигнала, электромагнитное поле, создаваемое обмоткой 5, исчезает, и пружина 6 возвращает запорный элемент 1 в закрытое состояние (прижимает его к седлу 0).

Таким образом, количество впрыснутого через форсунку топлива зависит от длительности электрического импульса, давления топлива, расходной характеристики форсунки (ее гидравлического сопротивления) и инерционной массы подвижных частей, а также от инерционности электромагнитной системы.

В связи с этим в реальной системе начало и окончание впрыска не соответствует началу и окончанию действия управляющего электрического импульса. После его подачи к обмотке 5, в последней возникает ток самоиндукции, препятствующий нарастанию тока в электрической обмотке, и, соответственно, к нарастанию магнитного потока, действующего на якорь 3. Из-за этого нарастание усилия, действующего на якорь 3, происходит с запозданием. Кроме того, сам якорь 3 вместе с пружиной 6 обладают определенной массой, и поэтому их перемещение запаздывает относительно действующих на них электромагнитных сил. В связи с изложенным, открытие клапана для впрыска топлива происходит с некоторым запозданием. При практически мгновенном прекращении подачи электрического импульса на обмотку 5, явление самоиндукции не дает столь же мгновенно исчезнуть магнитному потоку, действующему на якорь 3. Это обстоятельство с учетом действия инерционных сил препятствует своевременному запиранию форсунки.

Быстродействие форсунки можно увеличить за счет уменьшения индуктивности обмотки 5, уменьшив количество ее витков. Однако, при этом возрастает сила тока и энергопотребление. Для устранения этого явления последовательно виткам обмотки 5 включают резистор, ограничивающий силу тока.

В электромагнитных форсунках используют различные формы запорных элементов 1: плоские (дисковые), конусные (штифтовые) и сферические (шариковые). При этом наибольшее распространение получили конусные конструкции. Обычно, ход запорного элемента составляет около 0,15 мм.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]