
- •1. Из десятичной системы счисления - в двоичную и шестнадцатеричную:
- •Из двоичной и шестнадцатеричной систем счисления - в десятичную. В этом случае рассчитывается полное значение числа по формуле.
- •3. Из двоичной системы счисления в шестнадцатеричную:
- •4. Из шестнадцатеричной системы счисления в двоичную:
- •1. Из десятичной системы счисления - в двоичную и шестнадцатеричную:
- •3. Из двоичной системы счисления в шестнадцатеричную:
- •4. Из шестнадцатеричной системы счисления в двоичную:
- •Логические переменные и логические операции
- •4.2. Основные законы алгебры логики и правила преобразования логических выражений
- •4.3. Логические функции и таблицы истинности
- •4.4. Логические элементы и синтез логических схем
4. Из шестнадцатеричной системы счисления в двоичную:
каждая цифра исходной дроби заменяется тетрадой двоичных цифр в соответствии с таблицей;
незначащие нули отбрасываются.
Пример 3.14. Выполнить перевод из шестнадцатеричной системы счисления в двоичную числа 0,2А16.
По таблице имеем 216 = 00102 и А16 = 10102. Тогда 0,2А16 = 0,001010102.
Отбросим в результате незначащий ноль и получим окончательный результат: 0,2А16 = 0,00101012.
Правило перевода дробных чисел
Отдельно переводится целая часть числа, отдельно - дробная. Результаты складываются.
Пример 3.15. Выполнить перевод из десятичной системы счисления в шестнадцатеричную числа 19,847. Перевод выполнять до трех значащих цифр после запятой.
Представим исходное число как сумму целого числа и правильной дроби: 19,847 = 19 + 0,847.
Как следует из примера 3.2, 19 = 1316;
а в соответствии с примером 3.9 0,847 = 0,D8D16.
Тогда имеем: 19 + 0,847 = 1316 + 0,D8D16 = 13,D8D16.
Таким образом, 19,847 = 13,D8D16.
Правила выполнения простейших арифметических действий
Арифметические операции для двоичных и шестнадцатеричных чисел выполняются по тем же правилам, что и для десятичных чисел, которые хорошо знакомы читателю. Рассмотрим на примерах выполнение таких арифметических операций, как сложение, вычитание и умножение для целых чисел.
Правила сложения
Таблица сложения двоичных цифр имеет вид (желтым цветом выделены значения суммы):
|
0 |
1 |
0 |
0 |
1 |
1 |
1 |
10 |
Пример 1. Сложить двоичные числа 1101 и 11011.
Запишем слагаемые в столбик и пронумеруем разряды, присвоив младшему разряду номер 1:
номера разрядов: |
5 |
4 |
3 |
2 |
1 |
слагаемые: |
|
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
Процесс образования суммы по разрядам описан ниже:
разряд 1: 12 + 12 = 102; 0 остается в разряде 1, 1 переносится в разряд 2;
разряд 2: 02 + 12 + 12 = 102, где вторая 12 – единица переноса; 0 остается в разряде 2, 1 переносится в разряд 3;
разряд 3: 12 + 02 + 12 = 102, где вторая 12 – единица переноса; 0 остается в разряде 3, 1 переносится в разряд 4;
разряд 4: 12 + 12 + 12 = 112, где третья 12 – единица переноса; 1 остается в разряде 4, 1 переносится в разряд 5;
разряд 5: 12 + 12 = 102; где вторая 12 – единица переноса; 0 остается в разряде 5, 1 переносится в разряд 6.
Таким образом: 1 1 0 12 +1 1 0 1 12 = 10 1 0 0 02.
Проверим результат. Для этого определим полные значения слагаемых и суммы:
11012 = 1*23 +1*22 + 0*21 + 1*20 = 8 + 4 + 1 = 13;
110112 = 1*24 + 1*23 + 0*22 + 1*21 + 1*20 = 16 + 8 + 2 + 1 = 27;
1010002 = 1*25 + 0*24 + 1*23 + 0*22 + 0*21 + 0*20 = 32 + 8 = 40.
Поскольку 13 + 27 = 40, двоичное сложение выполнено верно.
Таблица сложения некоторых шестнадцатеричных чисел имеет вид (обозначения строк и столбцов соответствуют слагаемым):
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
А |
В |
С |
D |
E |
F |
10 |
0 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
1 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
2 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
3 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
4 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
5 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
6 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
7 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
8 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
9 |
9 |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
A |
A |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
1A |
B |
B |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
1A |
1B |
C |
C |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
1A |
1B |
1C |
D |
D |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
1A |
1B |
1C |
1D |
E |
E |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
1A |
1B |
1C |
1D |
1E |
F |
F |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
1A |
1B |
1C |
1D |
1E |
1F |
10 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
1A |
1B |
1C |
1D |
1E |
1F |
20 |
Пример 2. Сложить шестнадцатеричные числа 1С и 7В.
Запишем слагаемые в столбик и пронумеруем разряды, присвоив младшему разряду номер 1:
номера разрядов: |
2 |
1 |
слагаемые: |
1 |
С |
7 |
В |
Процесс образования результата по разрядам с использованием приведенной таблицы описан ниже :
разряд 1: С16 + В16 = 1716; 7 остается в разряде 1; 1 переносится в разряд 2;
разряд 2: 116 + 716 + 116 = 916, где вторая 116 – единица переноса.
Таким образом: 1 С16+7 В16 =9 716.
Проверим результат. Для этого определим полные значения слагаемых и результата (см. Перевод целых чисел):
1С16 = 1*161 + 12*160 = 16 + 12 = 28;
7В16 = 7*161 + 11*160 = 112 + 11 = 123;
9716 = 9*161 + 7*160 = 144 + 7 = 151.
Поскольку 28 + 123 = 151, сложение выполнено верно.
Правила вычитания
При вычитании используются таблицы сложения, приведенные ранее.
Пример 3. Вычесть из двоичного числа 101 двоичное число 11.
Запишем алгебраические слагаемые в столбик в порядке “уменьшаемое – вычитаемое” и пронумеруем разряды, присвоив младшему разряду номер 1:
номера разрядов: |
3 |
2 |
1 |
уменьшаемое: |
1 |
0 |
1 |
вычитаемое: |
|
1 |
1 |
Процесс образования результата по разрядам описан ниже:
разряд 1: 12 – 12 = 02;
разряд 2: поскольку 0 < 1 и непосредственное вычитание невозможно, занимаем для уменьшаемого единицу в старшем разряде 3. Тогда разряд 2 результата рассчитывается как 102 – 12 = 12;
разряд 3: поскольку единица была занята в предыдущем шаге, в разряде 3 остался 0.
Таким образом: 1 0 12 - 1 12 = 1 02.
Проверим результат. Для этого определим полные значения слагаемых и результата. По таблице (или с помощью Перевод целых чисел)имеем:
1012 = 5; 112 = 3; 102 = 2.
Поскольку 5 – 3 = 2, вычитание выполнено верно.
Пример 4. Вычесть из шестнадцатеричного числа 97 шестнадцатеричное число 7В.
Запишем алгебраические слагаемые в столбик в порядке “уменьшаемое – вычитаемое” и пронумеруем разряды, присвоив младшему разряду номер 1:
номера разрядов: |
2 |
1 |
уменьшаемое: |
9 |
7 |
вычитаемое: |
7 |
В |
Процесс образования результата по разрядам описан ниже:
разряд 1: поскольку 716 < В16 и непосредственное вычитание невозможно, занимаем для уменьшаемого единицу в старшем разряде 2. Тогда 1716 – В16 = С16;
разряд 2: поскольку единица была занята в предыдущем шаге, разряд 2 уменьшаемого стал равным 816. Тогда разряд 2 результата рассчитывается как 816 – 716 = 116.
Таким образом: 9 716 - 7 В16 = 1 С16.
Для проверки результата используем данные из примера 2.
Таким образом, вычитание выполнено верно.
Правила умножения
Таблица умножения двоичных цифр приведена ниже (обозначения строк и столбцов соответствуют слагаемым):
|
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
Пример 5. Перемножить двоичные числа 101 и 11.
Запишем множители в столбик и пронумеруем разряды, присвоив младшему разряду номер 1:
номера разрядов: |
3 |
2 |
1 |
сомножители: |
1 |
0 |
1 |
|
1 |
1 |
Процесс образования результата по шагам умножения множимого на каждый разряд множителя с последующим сложением показан ниже:
умножение множимого на разряд 1 множителя дает результат: 1012 * 12 = 1012;
умножение множимого на разряд 2 множителя дает результат: 1012 * 12 = 1012;
для получения окончательного результата складываем результаты предыдущих шагов:
слагаемые: |
|
1 |
0 |
1 |
1 |
0 |
1 |
|
|
сумма: |
1 |
1 |
1 |
1 |
Для проверки результата найдем полные значения сомножителей и произведения (см. таблицу):
1012 = 5; 112 = 3; 11112 = 15.
Поскольку 5 * 3 = 15, умножение выполнено верно: 1012 * 112 = 11112.
Пример 6. Перемножить шестнадцатеричные числа 1С и 7В.
Используем таблицу умножения шестнадцатеричных чисел (обозначения строк и столбцов соответствуют слагаемым):
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
2 |
0 |
2 |
4 |
6 |
8 |
A |
C |
E |
10 |
12 |
14 |
16 |
18 |
1A |
1C |
1E |
3 |
0 |
3 |
6 |
9 |
C |
F |
12 |
15 |
18 |
1B |
1E |
21 |
24 |
27 |
2A |
2D |
4 |
0 |
4 |
8 |
C |
10 |
14 |
18 |
1C |
20 |
24 |
28 |
2C |
30 |
34 |
38 |
3C |
5 |
0 |
5 |
A |
F |
14 |
19 |
1E |
23 |
28 |
2D |
32 |
37 |
3C |
41 |
46 |
4B |
6 |
0 |
6 |
C |
12 |
18 |
1E |
24 |
2A |
30 |
36 |
3C |
42 |
48 |
4E |
54 |
5A |
7 |
0 |
7 |
E |
15 |
1C |
23 |
2A |
31 |
38 |
3F |
46 |
4D |
54 |
5B |
62 |
69 |
8 |
0 |
8 |
10 |
18 |
20 |
28 |
30 |
38 |
40 |
48 |
50 |
58 |
60 |
68 |
70 |
78 |
9 |
0 |
9 |
12 |
1B |
24 |
2D |
36 |
3F |
48 |
51 |
5A |
63 |
6C |
75 |
7E |
87 |
A |
0 |
A |
14 |
1E |
28 |
32 |
3C |
46 |
50 |
5A |
64 |
6E |
78 |
82 |
8C |
96 |
B |
0 |
B |
16 |
21 |
2C |
37 |
42 |
4D |
58 |
63 |
6E |
79 |
84 |
8F |
9A |
100 |
C |
0 |
C |
18 |
24 |
30 |
3C |
48 |
54 |
60 |
6C |
78 |
84 |
90 |
9C |
108 |
114 |
D |
0 |
D |
1A |
27 |
34 |
41 |
4E |
5B |
68 |
75 |
82 |
8F |
9C |
109 |
116 |
123 |
E |
0 |
E |
1C |
2A |
38 |
46 |
54 |
62 |
70 |
7E |
8C |
9A |
108 |
116 |
124 |
132 |
F |
0 |
F |
1E |
2D |
3C |
4B |
5A |
69 |
78 |
87 |
96 |
100 |
114 |
123 |
132 |
141 |
Запишем множители в столбик и пронумеруем разряды, присвоив младшему разряду номер 1:
номера разрядов: |
2 |
1 |
сомножители: |
1 |
С |
7 |
В |
Процесс образования результата по шагам умножения множимого на каждый разряд множителя с последующим сложением показан ниже (для простоты записи у чисел не показан атрибут шестнадцатеричной системы счисления):
умножение на разряд 1 дает результат:
1С*В = (10+C) * B = 10*B+C*B = (1*B)*10+C*B = B0+84 = 134;
умножение на разряд 2 дает результат:
1С*70 = (10+C)*7*10 = 10*7*10+C*7*10 = 700+540 = С40;
для получения окончательного результата складываем результаты предыдущих шагов:
134+ С40 = D74.
Для проверки результата найдем полное значение сомножителей и произведения, воспользовавшись результатами примера 2 и правилами формирования полного значения числа:
1С16 = 28; 7В16 = 123;
D7416 = 13*162 + 7*161 + 4*160 = 3444.
Поскольку 28 * 123 = 3444, умножение выполнено верно: 1С16 * 7В16 = D7416.
Сложение по модулю
Важной операцией в информатике является сложение по модулю. Это операция арифметического сложения, при котором единица переноса в старший разряд, если таковая образуется при поразрядном сложении, отбрасывается. Обычно при выполнении этой операции конкретизируют, о каком модуле идет речь, например, по модулю 10, или по модулю 2, или по модулю 16. Обозначается эта операция ⊕.
Таблица сложения двоичных чисел по модулю 2 приведена ниже (обозначения строк и столбцов соответствуют слагаемым):
|
0 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
Пример 7. Сложить по модулю 2 двоичные числа 10 и 11.
Сложение выполним поразрядно:
разряд единиц: 0⊕1 = 1;
разряд десятков: 1⊕1 = 0.
Таким образом, 102⊕112 = 012. Чтобы подчеркнуть, что в сложении участвовали двухразрядные слагаемые, в результате оставляются обе цифры.
Таблица сложения десятичных чисел по модулю 10 приведена ниже (обозначения строк и столбцов соответствуют слагаемым):
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
1 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
2 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
1 |
3 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
1 |
2 |
4 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
1 |
2 |
3 |
5 |
5 |
6 |
7 |
8 |
9 |
0 |
1 |
2 |
3 |
4 |
6 |
6 |
7 |
8 |
9 |
0 |
1 |
2 |
3 |
4 |
5 |
7 |
7 |
8 |
9 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
8 |
8 |
9 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
9 |
9 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
Пример 8. Сложить по модулю 10 десятичные числа 59 и 152.
Сложение выполним поразрядно:
разряд единиц: 9⊕2 = 1;
разряд десятков: 5⊕5 = 0;
разряд сотен: 0⊕1 = 1.
Таким образом, 59⊕152 =101.
ЛЕКЦИЯ 3 «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ПК»
ЛЕКЦИЯ 4 ЧАСТЬ 2
Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии.
В состав центрального процессора входят:
· устройство управления (УУ);
· арифметико-логическое устройство (АЛУ);
· запоминающее устройство (ЗУ) на основе регистров процессорной памяти и кэш-памяти процессора;
· генератор тактовой частоты (ГТЧ).
Устройство управления организует процесс выполнения программ и координирует взаимодействие всех устройств ЭВМ во время её работы.
Арифметико-логическое устройство выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.
Запоминающее устройство - это внутренняя память процессора. Регистры служит промежуточной быстрой памятью, используя которые, процессор выполняет расчёты и сохраняет промежуточные результаты. Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций.
Генератор тактовой частоты генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.
К основным характеристикам процессора относятся:
· Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду.
· Тактовая частота в МГц. Тактовая равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего. Характерные тактовые частоты микропроцессоров: 40 МГц, 66 МГц, 100 МГц, 130 МГц, 166 МГц, 200 МГц, 333 МГц, 400 МГц, 600 МГц, 800 МГц, 1000 МГц и т. д. До 3ГГц Тактовая частота отражает уровень промышленной технологии, по которой изготавливался данный процессор. Она также характеризирует и компьютер, поэтому по названию модели микропроцессора можно составить достаточно полное представление о том, к какому классу принадлежит компьютер. Поэтому часто компьютерам дают имена микропроцессоров, входящих в их состав. Ниже приведены названия наиболее массовых процессоров, выпущенных фирмой Intel и годы их создания: 8080 (1974 г.), 80286 (1982 г.), 80386DX (1985 г.), 80486DX (1989 г.), 80586 или Pentium (1993 г.), Pentium Pro (1995 г.), Pentium II (1997 г.), Pentium III (1999 г.), Pentium IV (2001 г.). Как видно, увеличение частоты – одна из основных тенденций развития микропроцессоров. На рынке массовых компьютеров лидирующее место среди производителей процессоров занимают 2 фирмы: Intel и AMD. За ними закрепилось базовое название, переходящее от модели к модели. У Intel – это Pentium и модель с урезанной кэш-памятью Pentium Celeron; у AMD – это Athlon и модель с урезанной кэш-памятью Duron.
· Разрядность процессора - это максимальное количество бит информации, которые могут обрабатываться и передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные. Например, если регистр имеет разрядность 2 байта, то разрядность процессора равна 16 (2x8); если 4 байта, то 32; если 8 байтов, то 64.
Для пользователей процессор интересен прежде всего своей системой команд и скоростью их выполнения. Система команд процессора представляет собой набор отдельных операций, которые может выполнить процессор данного типа. Разные модели микропроцессоров выполняют одни и те же операции за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций.
Для математических вычислений к основному микропроцессору добавляют математический сопроцессор. Начиная с модели 80486DX процессор и сопроцессор выполняют на одном кристалле.
Устройства памяти ЭВМ
Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:
Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором.
Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер.
Энергозависимой называется память, которая стирается при выключении компьютера.
Энергонезависимой называется память, которая не стирается при выключении компьютера.
К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы.
К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш-память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате.
Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.
Устройства ввода-вывода
Компьютер обменивается информацией с внешним миром с помощью периферийных устройств. Только благодаря периферийным устройствам человек может взаимодействовать с компьютером, а также со всеми подключенными к нему устройствами. Любое подключенное периферийное устройство в каждый момент времени может быть или занято выполнением порученной ему работы или пребывать в ожидании нового задания. Влияние скорости работы периферийных устройств на эффективность работы с компьютером не меньше, чем скорость работы его центрального процессора. Скорость работы внешних устройств от быстродействия процессора не зависит. Наиболее распространенные периферийные устройства приведены на рисунке:
Периферийные устройства делятся на устройства ввода и устройства вывода. Устройства ввода преобразуют информацию в форму понятную машине, после чего компьютер может ее обрабатывать и запоминать. Устройства вывода переводят информацию из машинного представления в образы, понятные человеку.
Ниже приведена классификация устройств ввода:
Самым известным устройством ввода информации является клавиатура (keyboard) – это стандартное устройство, предназначенное для ручного ввода информации. Работой клавиатуры управляет контроллер клавиатуры, расположенный на материнской плате и подключаемый к ней через разъем на задней панели компьютера. При нажатии пользователем клавиши на клавиатуре, контроллер клавиатуры преобразует код нажатой клавиши в соответствующую последовательность битов и передает их компьютеру. Отображение символов, набранных на клавиатуре, на экране компьютера называется эхом. Обычная современная клавиатура имеет, как правило, 101-104 клавиши, среди которых выделяют алфавитно-цифровые клавиши, необходимые для ввода текста, клавиши управления курсором и ряд специальных и управляющих клавиш. Существуют беспроводные модели клавиатуры, в них связь клавиатуры с компьютером осуществляется посредством инфракрасных лучей.
Наиболее важными характеристиками клавиатуры являются чувствительность ее клавиш к нажатию, мягкость хода клавиш и расстояние между клавишами. На долговечность клавиатуры определяется количеством нажатий, которые она рассчитана выдержать. Клавиатура проектируется таким образом, чтобы каждая клавиша выдерживала 30-50 миллионов нажатий.
К манипуляторам относят устройства, преобразующие движения руки пользователя в управляющую информацию для компьютера. Среди манипуляторов выделяют мыши, трекболы, джойстики.
Мышь предназначена для выбора и перемещения графических объектов экрана монитора компьютера. Для этого используется указатель, перемещением которого по экрану управляет мышь. Мышь позволяет существенно сократить работу человека с клавиатурой при управлении курсором и вводе команд. Особенно эффективно мышь используется при работе графическими редакторами, издательскими системами, играми. Современные операционные системы также активно используют мышь для управляющих команд.
У мыши могут быть одна, две или три клавиши. Между двумя крайними клавишами современных мышей часто располагают скрол. Это дополнительное устройство в виде колесика, которое позволяет осуществлять прокрутку документов вверх-вниз и другие дополнительные функции.
Мышь состоит из пластикового корпуса, cверху находятся кнопки, соединенные с микропереключателями. Внутри корпуса находится обрезиненный металлический шарик, нижняя часть которого соприкасается с поверхностью стола или специального коврика для мыши, который увеличивает сцепление шарика с поверхностью. При движении манипулятора шарик вращается и переедает движение на соединенные с ним датчики продольного и поперечного перемещения. Датчики преобразуют движения шарика в соответствующие импульсы, которые передаются по проводам мыши в системный блок на управляющий контроллер. Контроллер передает обработанные сигналы операционной системе, которая перемещает графический указатель по экрану. В беспроводной мыши данные передаются с помощью инфракрасных лучей. Существуют оптические мыши, в них функции датчика движения выполняют приемники лазерных лучей, отраженных от поверхности стола.
Трекбол по функциям близок мыши, но шарик в нем больших размеров, и перемещение указателя осуществляется вращением этого шарика руками. Трекбол удобен тем, что его не требуется перемещать по поверхности стола, которого может не быть в наличии. Поэтому, по сравнению с мышью, он занимает на столе меньше места. Большинство переносных компьютеров оснащаются встроенным трекболом.
Джойстик представляет собой основание с подвижной рукояткой, которая может наклоняться в продольном и поперечном направлениях. Рукоятка и основание снабжаются кнопками. Внутри джойстика расположены датчики, преобразующие угол и направление наклона рукоятки в соответствующие сигналы, передаваемые операционной системе. В соответствии с этими сигналами осуществляется перемещение и управление графических объектов на экране.
Дигитайзер – это устройство для ввода графических данных, таких как чертежи, схемы, планы и т. п. Он состоит из планшета, соединенного с ним визира или специального карандаша. Перемещая карандаш по планшету, пользователь рисует изображение, которое выводится на экран.
Сканер – устройство ввода графических изображений в компьютер. В сканер закладывается лист бумаги с изображением. Устройство считывает его и пересылает компьютеру в цифровом виде. Во время сканирования вдоль листа с изображением плавно перемещается мощная лампа и линейка с множеством расположенных на ней в ряд светочувствительных элементов. Обычно в качестве светочувствительных элементов используют фотодиоды. Каждый светочувствительный элемент вырабатывает сигнал, пропорциональный яркости отраженного света от участка бумаги, расположенного напротив него. Яркость отраженного луча меняется из-за того, что светлые места сканируемого изображения отражают гораздо лучше, чем темные, покрытые краской. В цветных сканерах расположено три группы светочувствительных элементов, обрабатывающих соответственно красные, зеленые и синие цвета. Таким образом, каждая точка изображения кодируется как сочетание сигналов, вырабатываемых светочувствительными элементами красной, зеленой и синей групп. Закодированный таким образом сигнал передается на контроллер сканера в системный блок.
Различают сканеры ручные, протягивающие и планшетные. В ручных сканерах пользователь сам ведет сканер по поверхности изображения или текста. Протягивающие сканеры предназначены для сканирования изображений на листах только определенного формата. Протягивающее устройство таких сканеров последовательно перемещает все участки сканируемого листа над неподвижной светочувствительной матрицей. Наибольшее распространение получили планшетные сканеры, которые позволяют сканировать листы бусмги, книги и другие объекты, содержащие изображения. Такие сканеры состоят из пластикового корпуса, закрываемого крышкой. Верхняя поверхность корпуса выполняется из оптически прозрачного материала, на который кладется сканируемое изображение. После этого изображение закрывается крышкой и производится сканирование. В процессе сканирования под стеклом перемещается лампа со светочувствительной матрицей.
Главные характеристики сканеров - это скорость считывания, которая выражается количеством сканируемых станиц в минуту (pages per minute - ppm), и разрешающая способность, выражаемая числом точек получаемого изображения на дюйм оригинала (dots per inch - dpi).
После ввода пользователем исходных данных компьютер должен их обработать в соответствии с заданной программой и вывести результаты в форме, удобной для восприятия пользователем или для использования другими автоматическими устройствам посредством устройств вывода.
Выводимая информация может отображаться в графическом виде, для этого используются мониторы, принтеры или плоттеры. Информация может также воспроизводиться в виде звуков с помощью акустических колонок или головных телефонов, регистрироваться в виде тактильных ощущений в технологии виртуальной реальности, распространяться в виде управляющих сигналов устройства автоматики, передаваться в виде электрических сигналов по сети.
Монитор (дисплей) является основным устройством вывода графической информации. По размеру диагонали экрана выделяют мониторы 14-дюймовые, 15-дюймовые, 17-дюймовые, 19-дюймовые, 21-дюймовые. Чем больше диагональ монитора, тем он дороже. По цветности мониторы бывают монохромные и цветные. Любое изображение на экране монитора образуется из светящихся разными цветами точек, называемых пикселями (это название происходит от PICture CELL - элемент картинки). Пиксель – это самый мелкий элемент, который может быть отображен на экране. Чем качественнее монитор, тем меньше размер пикселей, тем четче и контрастнее изображение, тем легче прочесть самый мелкий текст, а значит, и меньше напряжение глаз. По принципу действия мониторы подразделяются на мониторы с электронно-лучевой трубкой (Catode Ray Tube - CRT) и жидкокристаллические - (Liquid Crystal Display - LCD).
В мониторах с электронно-лучевой трубкой изображение формируется с помощью зерен люминофора – вещества, которое светится под воздействием электронного луча. Различают три типа люминофоров в соответствии с цветами их свечения: красный, зеленый и синий. Цвет каждой точки экрана определяется смешением свечения трех разноцветных точек (триады), отвечающих за данный пиксель. Яркость соответствующего цвета меняется в зависимости от мощности электронного пучка, попавшего в соответствующую точку. Электронный пучок формируется с помощью электронной пушки. Электронная пушка состоит из нагреваемого при прохождении электрического тока проводника с высоким удельным электрическим сопротивлением, эмитирующего электроны покрытия, фокусирующей и отклоняющей системы.
При прохождении электрического тока через нагревательный элемент электронной пушки, эмитирующее покрытие, нагреваясь, начинает испускать электроны. Под действием ускоряющего напряжения электроны разгоняются и достигают поверхности экрана, покрытой люминофором, который начинает светиться. Управление пучком электронов осуществляется отклоняющей и фокусирующей системой, которые состоят из набора катушек и пластин, воздействующих на электронный пучек с помощью магнитного и электрического полей. В соответствии с сигналами развертки, подаваемыми на электронную пушку, электронный луч побегает по каждой строчке экрана, последовательно высвечивая соответствующие точки люминофора. Дойдя до последней точки, луч возвращается к началу экрана. Таким образом, в течение определенного периода времени изображение перерисовывается. Частоту смены изображений определяет частота горизонтальной синхронизации. Это один из наиболее важных параметров монитора, определяющих степень его вредного воздействия на глаза. В настоящее время гигиенически допустимый минимум частоты горизонтальной синхронизации составляет 80 Гц, у профессиональных мониторов она составляет 150 Гц.
Современные мониторы с электронно-лучевой трубкой имеют специальное антибликовое покрытие, уменьшающее отраженный свет окон и осветительных приборов. Кроме того, монитор покрывают антистатическим покрытием и пленкой, защищающей от электромагнитного излучения. Дополнительно на монитор можно установить защитный экран, который необходимо подсоединить к заземляющему проводу, что также защитит от электромагнитного излучения и бликов. Уровни излучения мониторов нормируются в соответствии со стандартами LR, MPR и MPR-II.
Жидкокристаллические мониторы имеют меньшие размеры, потребляют меньше электроэнергии, обеспечивают более четкое статическое изображение. В них отсутствуют типичные для мониторов с электронно-лучевой трубкой искажения. Принцип отображения на жидкокристаллических мониторах основан на поляризации света. Источником излучения здесь служат лампы подсветки, расположенные по краям жидкокристаллической матрицы. Свет от источника света однородным потоком проходит через слой жидких кристаллов. В зависимости от того, в каком состоянии находится кристалл, проходящий луч света либо поляризуется, либо не поляризуется. Далее свет проходит через специальное покрытие, которое пропускает свет только определенной поляризации. Там же происходит окраска лучей в нужную цветовую палитру. Жидкокристаллические мониторы практически не производят вредного для человека излучения.
Для получения копий изображения на бумаге применяют принтеры, которые классифицируются:
по способу получения изображения: литерные, матричные, струйные, лазерные и термические;
по способу формирования изображения: последовательные, строчные, страничные;
по способу печати: ударные, безударные;
по цветности: чёрно-белые, цветные.
Наиболее распространены принтеры матричные, лазерные и струйные принтеры. Матричные принтеры схожи по принципу действия с печатной машинкой. Печатающая головка перемещается в поперечном направлении и формирует изображение из множества точек, ударяя иголками по красящей ленте. Красящая лента перемещается через печатающую головку с помощью микроэлектродвигателя. Соответствующие точки в месте удара иголок отпечатываются на бумаге, расположенной под красящей лентой. Бумага перемещается в продольном направлении после формирования каждой строчки изображения. Полиграфическое качество изображения, получаемого с помощью матричных принтеров низкое и они шумны во время работы. Основное достоинство матричных принтеров - низкая цена расходных материалов и невысокие требования к качеству бумаги.
Струйный принтер относится к безударным принтерам. Изображение в нем формируется с помощью чернил, которые распыляются через капилляры печатающей головки.
Лазерный принтер также относится к безударным принтерам. Он формирует изображение постранично. Первоначально изображение создается на фотобарабане, который предварительно электризуется статическим электричеством. Луч лазера в соответствии с изображением снимает статический заряд на белых участках рисунка. Затем на барабан наносится специальное красящее вещество – тонер, который прилипает к фотобарабану на участках с неснятым статическим зарядом. Затем тонер переносится на бумагу и нагревается. Частицы тонера плавятся и прилипают к бумаге.
Для ускорения работы, принтеры имеют собственную память, в которой они хранят образ информации, подготовленной к печати.
К основным характеристикам принтеров можно относятся:
- ширина каретки, которая обычно соответствую бумажному формату А3 или А4;
- скорость печати, измеряемая количеством листов, печатаемы в минуту
- качество печати, определяемое разрешающей способностью принтера - количеством точек на дюйм линейного изображения. Чем разрешение выше, тем лучше качество печати.
- расход материалов: лазерным принтером - порошка, струйным принтером - чернил, матричным принтером - красящих лент.
Плоттер (графопостроитель) – это устройство для отображения векторных изображений на бумаге, кальке, пленке и других подобных материалах. Плоттеры снабжаются сменными пишущими узлами, которые могут перемещаться вдоль бумаги в продольном и поперечном направлениях. В пишущий узел могут вставляться цветные перья или ножи для резки бумаги. Графопостроители могут быть миниатюрными, и могут быть настолько большими, что на них можно вычертить кузов автомобиля или деталь самолета в натуральную величину.
ЛЕКЦИЯ5 «ГОРЯЧИЕ КЛАВИШИ»
Общие:
Переключить активное окно: ALT+TAB
Открыть меню: "Пуск"CTRL+ESC или «Виндовс», находится обычно между CTRL и ALT
Выполнить команду меню: ALT+ подчеркнутая буква
Закрыть текущее окно в программе: CTRL+F4
Вывести справку: F1
Вывести системное меню для текущего окна: ALT+ Пробел
Вывести опции для выделенного элемента: SHIFT+F10
Показать системное меню для программы: ALT+HYPHEN (-)
Выделить знак: SHIFT+СТРЕЛКА
Выделить слово: SHIFT+CTRL+СТРЕЛКА
Копировать: CTRL+C
Вырезать: CTRL+X
Удалить: DELETE
Вставить: CTRL+V
Отменить: CTRL+Z
Удалить, не помещая в корзину: SHIFT+DELETE
Активировать меню: F10
Проводник | Мой Компьютер | Рабочий Стол
Пропустить Автозагрузку CD-ROM: Удерживать Shift во время загрузки CD-ROM
Копировать файл: Удерживать CTRL во время перемещения
Создать ярлык: Удерживать CTRL + SHIFT во время перемещения файла
Удалить, не помещая в корзину: SHIFT+DELETE
Найти: Все файлы: F3
Вывести меню для объекта: Клавиша APPLICATION
Обновить: F5
Переименовать: F2
Выбрать все: CTRL + A
Посмотреть свойства: ALT+ENTER или ALT+ Двойной щелчок
Диалоговые Окна:
Завершить текущее задание: Esc
Нажать на выбранную кнопку или поставить флажок: SPACEBAR
Нажать соответствующую кнопку: ALT+ подчеркнутая буква
Нажать на выбранную кнопку: ENTER
Движение назад по опциям: SHIFT+TAB
Движение назад по закладкам: CTRL+SHIFT+TAB
Движение вперед по опциям: TAB
Движение вперед по закладкам: CTRL+TAB
На уровень выше (в окнах "Открыть" и "Сохранить как")BACKSPACE
Обновить окно загрузки или сохранения: F5
WinKey + другие клавиши
Переключение между кнопками на панели задач: WINDOWS+TAB
Отобразить поиск файлов: WINDOWS+F
Вывести помощь по WINDOWS: WINDOWS+F1
Отобразить "Выполнить": WINDOWS+R
Открыть меню "Пуск": WINDOWS
Вывести "Системные опции": WINDOWS+BREAK
Открыть "Проводник": WINDOWS+E
Свернуть или восстановить все окна: WINDOWS+D
Восстановить все окна: SHIFT+WINDOWS+M
ЛЕКЦИЯ 6 «ИНФОРМАТИКА И ЛОГИКА»
Логические основы компьютерной техники