Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Уравнение прямой и плоскости.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
827.9 Кб
Скачать

Пример. .

§ 12. Уравнение плоскости в пространстве

1°. Различные виды уравнения плоскости.

Принципы построения уравнения плоскости в пространстве во многом совпадают с построением прямой на плоскости. Это связано с тем, что размерность прямой отличается от размерности плоскости на единицу, а размерность плоскости отличается на единицу от размерности пространства. Поэтому плоскость определяется двумя линейно независимыми векторами и точкой, через которую эта плоскость проходит.

Утверждение 1. Пусть на плоскости задана т. и два неколлинеарных вектора и . Тогда т.

(1)

Доказательство.

| Пусть т. М лежит в плоскости, тогда это означает, что компланарны  в силу неколлинеарности и , вектор может быть представлен как линейная комбинация и , т.е. справедливо (1).

| если справедливо (1), то компланарен с и  , ч.т.д.∎

Уравнение (1) будет называться уравнением плоскости в векторной форме. Оно означает лишь, что плоскость проходит через т. и параллельно и . Зафиксируем в пространстве аффинную систему координат. Пусть и - радиус-вектора т. и М.

Тогда (1) перепишем:

(2)

- векторное параметрическое уравнение плоскости.

Если теперь зафиксировать координаты векторов , , , , например , то уравнение (2) примет вид

(3)

Уравнение (3) называется параметрическим уравнением плоскости. Если его переписать в виде

,

,

,

представляющем собой линейную зависимость столбцов матрицы, то имеем

= 0. (4)

Разлагая этот определитель по первому столбцу, получим:

, (5)

где

. (6)

Уравнение (4) является уравнением плоскости, проходящей через т. параллельно векторам

Если в плоскости заданы три точки , , , то в качестве векторов и можно принять . Тогда уравнение плоскости, проходящей через три точки, представляется в виде:

. (7)

Если в уравнении (5) раскрыть скобки и обозначить , то получим

(8)

- общее уравнение плоскости. Отметим, что в силу неколлинеарности хотя бы один из определителей (6) отличен от нуля  уравнение (8) является уравнением первой степени.

Таким образом, показали, что любое уравнение плоскости может быть записано в виде уравнение первой степени.

Докажем и обратное: а именно, любое уравнение первой степени вида (8) представляет собой уравнение некоторой плоскости.

Действительно, пусть в (8) . Тогда общее решение уравнения (8) можно записать в виде

Здесь частное решение определяет координаты точки, через которую проходит плоскость, а вектора параллельны рассматриваемой плоскости. Покажем, что плоскость, проходящая через полученную точку параллельно и определяется уравнением (8). Действительно, уравнение плоскости имеет вид:

откуда имеем

,

что эквивалентно (8). Таким образом, доказана

Теорема 1. Плоскость в пространстве - это поверхность первого порядка.