- •Б. И. Огорелков, а. П. Попов
- •1 Основные понятия и определения
- •1.1 Общие сведения
- •1.2 Резистивные элементы
- •1.3 Индуктивный и емкостный элементы
- •1.4 Источники постоянного напряжения
- •2 Электрические цепи постоянного тока
- •2.1 Общие сведения
- •2.2 Законы Кирхгофа
- •2.3 Распределение потенциала вдоль электрической цепи
- •2.4 Последовательное и параллельное соединения
- •2.4.2 Параллельное соединение
- •2.5 Соединение резисторов треугольником и звездой
- •2.6 Электрическая энергия и мощность
- •2.7 Номинальные величины источников и приемников.
- •2.8 Нелинейные электрические цепи постоянного тока
- •2.9 Магнитные цепи
- •3 Линейные однофазные электрические цепи синусоидального тока
- •3.1 Основные величины, характеризующие синусоидальные ток, напряжение и эдс
- •3.2 Элементы электрических цепей синусоидального тока
- •3.3 Расчет неразветвленной электрической цепи
- •3.4 Мощность в линейных цепях синусоидального тока
- •3.5 Переходные процессы в электрических цепях
- •4 Трехфазные линейные электрические цепи синусоидального тока
- •4.1 Трехфазный источник электрической энергии
- •4.2 Анализ электрических цепей при соединении трехфазного источника и приемника по схеме «звезда» с нулевым проводом
- •4.3 Соединение приемника по схеме «треугольник»
- •4.4 Мощность трехфазной цепи
- •4.4.1 Трехфазная электрическая цепь с симметричным приемником
- •5 Электромагнитные устройства
- •5.1 Выключатели, кнопки и клавиши
- •5.2 Электрические контакты
- •5.3 Электромагниты
- •5.4 Контакторы
- •5.5 Электромагнитные реле
- •6 Трансформаторы
- •6.1 Общие сведения
- •6.2 Принцип действия трансформатора
- •6.3 Работа трансформатора в режиме холостого хода
- •6.4 Опыт короткого замыкания
- •6.5 Мощность потерь в трансформаторе
- •6.6 Автотрансформаторы
- •7 Электрические машины
- •7.1 Общие сведения
- •7.2 Вращающееся магнитное поле
- •7.3 Асинхронные машины
- •7.3.4 Контакторное управление асинхронными
- •7.4 Синхронные машины
- •8 Электроника
- •8.1 Общие сведения
- •8.2 Полупроводниковые диоды
- •8.2.1 Полупроводниковые фотоэлектрические приборы
- •8.2.2 Транзисторы
- •8.2.3 Оптоэлектронные приборы
- •8.2.4 Тиристоры
- •8.3 Выпрямители на полупроводниковых диодах
- •8.3.1 Однополупериодное выпрямление
- •8.3.2 Двухполупериодное выпрямление
- •8.3.3 Трехфазные выпрямители
- •8.3.4 Управляемые выпрямители
- •8.3.5 Стабилизаторы напряжения
- •8.4 Усилители на транзисторах
- •8.4.1 Операционные усилители
- •9 Электрические измерения и приборы
- •9.1 Системы электрических измерительных приборов
- •9.2 Основные характеристики электрических измерительных приборов
- •9.3 Измерение тока, напряжения и мощности
- •9.3.2 Трансформатор тока (тт)
- •9.3.5 Электроннолучевые осциллографы
- •9.3.6 Цифровые измерительные приборы (цип)
- •9.3.7 Технические характеристики цип
- •9.3.8 Цифровые вольтметры.
- •9.3.9 Использование цип для измерения переменных напряжений
- •10 Частотно-регулируемый электропривод
- •10.1 Методы частотного регулирования
- •10.2 Краткие сведения о преобразователях частоты
- •10.3 Принцип действия однофазного пч
- •11 Электрооборудование
- •11.1 Трансформаторные подстанции и распределительные
- •11.2 Релейная защита и защита от атмосферных перенапряжений
- •12 Электротехнология
- •12.1 Электротермия
- •12.2 Электрохимия
- •12.3 Электронно-ионная технология
- •12.3.1 Общие сведения
- •13 Системы электроснабжения
- •13.1 Общие сведения об электроснабжении
- •14 Электробезопасность
- •14.1 Общие сведения
- •14.2 Защитное заземление
- •14.3 Зануление
- •14.4 Конструкция заземлителя
- •Библиографический список
- •Оглавление
5.3 Электромагниты
Катушка со стальным разомкнутым магнитопроводом (сердечником) образует электромагнит (рис. 5.3).
Рис. 5.3. Схема простейшего электромагнита:
1 – катушка; 2 – магнитопровод; 3 – якорь
Ток I в катушке создает магнитный поток Ф магнитопровода. Этот поток замыкается через подвижную часть магнитопровода, которую называют якорем. Якорь намагничивается и притягивается к неподвижной части магнитопровода.
Если ток в катушке прерывается, якорь отпадает от магнитопровода под действием собственной тяжести или специальной возвратной пружины.
Якорь электромагнита, изображенного на рисунке 5.3, поворачивается на оси. В этом случае электромагнит называется электромагнитом клапанного типа. Существуют электромагниты прямоходовые (в которых якорь движется поступательно), со сложным движением якоря и др.
Школьный звонок и звонок телефона – это электромагнитные механизмы. Существуют электромагнитные тормоза, муфты и т.д. Точные электромагниты используют в измерительной технике. Очень сильные электромагниты применяют в физических экспериментах. Если в электромагните убрать якорь, то его можно применять для подъема ферромагнитных предметов. Такие электромагниты (их называют подъемными) работают на металлургических заводах, поднимают металлолом и др.
Важнейшей характеристикой электромагнита является сила тяги. Если зазор между сердечником и якорем невелик, то силу тяги F можно определить по формуле Максвелла:
, (5.2)
где S – площадь поперечного сечения сердечника, точнее площадь полюса, т.е. окончания сердечника, взаимодействующего с якорем;
– магнитная постоянная, равная
Если площади сечения сердечника и полюса одинаковы, то можно принять, что и тогда:
(5.3)
где В – индукция магнитного поля в сердечнике.
Если зазор между полюсами сердечника и якоря соизмерим с линейными размерами полюсов, то сила тяги электромагнита определяется по формуле
, (5.4)
где I – сила тока в обмотке электромагнита, А;
N – число витков обмотки.
Из (5.4) следует, что при малых зазорах сила тяги очень велика, но при увеличении зазора сила тяги F электромагнита резко уменьшается.
Для производственных механизмов такая зависимость силы тяги электромагнита и зазора нежелательна, и конструкторы электромагнитов применяют специальные меры для того, чтобы обеспечить постоянство силы тяги при изменении зазора.
Если обмотку электромагнита включить на переменный ток, то сила тяги также станет переменной и будет изменяться в больших пределах, а в момент, когда ток проходит через нуль и сила тяги равна нулю, якорь будет то притягиваться, то отпадать. Этот эффект используется в вибраторах.
Так как сила тяги пропорциональна квадрату тока, то частота вибрации якоря вдвое превышает частоту сети.
5.4 Контакторы
Простейшие коммутирующие аппараты (выключатели, рубильники и т.д.) обладают одним общим недостатком. Для того чтобы включить или выключить электрическую цепь, надо подойти к выключателю и дотронуться до него рукой. На расстоянии (дистанции) переключить обычный выключатель невозможно. Однако в мощных нагрузках протекают большие токи и имеются большие напряжения, что делает невозможным включение и выключение мощного электрооборудования вручную по соображениям техники безопасности. Кроме того, дистанционное автоматическое выключение необходимо в аварийных ситуациях.
Аппарат, в котором мощные электрические контакты замыкаются электромагнитом, а не вручную, называют контактором.
Схема простейшего контактора изображена на рисунке 5.4.
Рис. 5.4. Схема простейшего контактора
Если в обмотке электромагнита 1 возникнет ток I1, якорь притянется к сердечнику, стержень 2 переместится вверх и замкнет контакты a-b. Цепь с током I2 окажется включенной (замкнутой).
Если разорвать цепь с током I1 электромагнита, то под действием пружины 3 подвижные контакты с – d переместятся вниз и разорвут цепь с током I2, потребляемого нагрузкой. Включение электромагнита можно производить вручную на большом расстоянии от контактора, т.к. обмотку электромагнита и подводящие провода можно выполнить из тонкого провода (сигнальные провода).