
- •Тема 1 – Основы физики полупроводниковых диодов
- •§1.1 Электрофизические свойства полупроводников
- •§1.2 Электронно-дырочный переход в равновесном состоянии
- •§1.3 Электронно-дырочный переход в неравновесном состоянии
- •§1.4 Вах /вольт амперная характеристика/ p-n-перехода
- •§1.5 Ёмкость p-n-перехода
- •§1.6 Контакты металла с полупроводником
- •Тема 2 – Полупроводниковые приборы
- •§2.1 Полупроводниковые диоды
- •§2.2 Биполярные транзисторы: устройство и принцип действия
- •§2.3 Транзистор, как усилитель напряжения и мощности
- •§2.4 Эффект модуляции толщины базы
- •§2.5 Схемы включения и режимы работы транзисторов
- •§2.6 Статические характеристики биполярного транзистора
- •§2.7 Полевые транзисторы с управляющим входом
- •§2.8 Основные характеристики полевого транзистора
- •§2.9 Полевые транзисторы мдп-структуры
- •§2.10 Тиристоры
- •Тема 3 – Основы микроэлектроники
- •§3.1 Основные понятия микроэлектроники
- •§3.2 Изоляция элементов в монолитных имс
- •Технология «кремний на сапфире»
- •§3.3 Элементы интегральных схем
- •Тема 4 – Усилительные устройства
- •§4.1 Основные характеристики и параметры усилителей
- •§4.2 Нелинейные искажения в усилителях
- •§4.3 Обратная связь в усилителях: классификация
- •§4.4 Влияние обратной связи на параметры усилителя
- •§4.5 Усилители на биполярных транзисторах. Выбор режима работы
- •§4.5 Стабилизация режима работы каскадов на биполярных транзисторах
- •§4.6 Дифференциальные каскады /дк/
- •§4.7 Источники тока
- •§4.8 Операционные усилители: характеристики и параметры
- •§4.9 Линейные схемы на операционных усилителях
ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА
Тема 1 – Основы физики полупроводниковых диодов
§1.1 Электрофизические свойства полупроводников
В полупроводниках удельное электрическое сопротивление принято измерять для 1см3 материала.
Характерной особенностью полупроводников является сильная зависимость удельного электрического сопротивления от воздействия полей, изменения температуры, ионизированного излучения. Это связано с тем, что ширина запрещённой зоны от 0.5 до 3 эВ /зона проводимости и запрещённая зона перекрываются/.
Наиболее распространёнными материалами являются: германий, кремний, арсенид галлия /Ge, Si, GaAs/. У германия ширина запрещённой зоны – 0.72 эВ, у кремния – 1.12 эВ, а у арсенида галлия – 1.43 эВ. У германия максимальная рабочая температура 75°C, а у кремния 125°C.
В
кристаллическом твёрдом теле существуют
квазинепрерывные зоны разрешённых
значений энергии электронов. Верхняя
разрешённая зона, которая при температуре
абсолютного нуля /
=0К/
целиком заполнена электронами, называется
валентной.
Расположенная над ней следующая
разрешённая зона, которая при температуре
абсолютного нуля пуста или частично
заполнена электронами, называется зоной
проводимости.
Ч
ем
меньше ширина запрещённой зоны, тем
ниже рабочая температура. Кристаллическая
решётка Si
– тетраэдр.
При T=0K все электроны связаны и проводимость полупроводника равна 0. Незаполненная связь – это дырка.
Процесс возникновения пары носителей называется генерацией пары носителей.
Процесс исчезновения пары носителей называется рекомбинацией пары носителей.
В
беспримесном полупроводнике /собственном/
концентрация электронов и дырок
совпадает.
Э
нергия
может высвобождаться в виде тепла, либо
в виде электромагнитного излучения.
Чем выше энергия, тем больше частота.
-ширина
запрещённой зоны
Уровень Ферми – уровень, вероятность заполнения которого равна ½.
Различают электронную и дырочную составляющую тока и проводимости: n-типа и p-типа.
Удельная
проводимость:
Подвижность
- средняя скорость движения заряда в
электрическом поле единичной напряжённости.
Как правило,
.
Примесные полупроводники – часть атомов основного материала замещена атомами другого материала.
Легирование – процесс введения примесей в полупроводник. Для легирования используется 3-х валентные бор, алюминий, индий, галлий и 5-и валентные сурьма, мышьяк, фосфор.
Рассмотрим кристаллическую решётку кремния, легированного фосфором.
=
0.044эВ
– энергия, чтобы ионизировать атом
примеси /энергия активации/.
В таком полупроводнике концентрация электронов будет выше, чем концентрация дырок. Примесь, сообщающую полупроводнику электронный характер проводимости, называют донорной.
Носители заряда с большой концентрацией называют основными носителями заряда.
Чем выше степень легирования, тем выше будет располагаться уровень Ферми.
Полупроводники, у которых уровень Ферми располагается в зоне проводимости, называются вырожденными полупроводниками.
С ростом температуры уровень Ферми будет стремиться к середине запрещённой зоны.
Р
ассмотрим
примесный полупроводник, в котором
часть атомов основного материала /в
данном случае кремния/ заменена атомами
3-х валентного индия.
Будет дырка.
Какова концентрация примесей, такова и концентрация дырок. Дырок будет больше на количество атомов, введённых в материал.
Такой полупроводник называют дырочным /или p-типа/.
Примесь, сообщающую полупроводнику дырочный характер проводимости называют акцепторной.
Для
данного примера /Si,
In/
=0.16эВ.
Уровень Ферми располагается ниже
середины запрещённой зоны.
Чем выше степень легирования, тем ниже уровень Ферми. Тогда в вырожденных полупроводниках p-типа WF – в валентной зоне.