
- •Топливо и теория горения
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Объем дисциплины и виды учебной работы
- •Раздел 1. Топливо: виды, состав, характеристики (25 часов)
- •Раздел 2. Материальный и тепловой балансы процесса горения топлива
- •Раздел 3. Теоретические основы топочных процессов (25 часов)
- •Раздел 4. Сжигание топлива (16 часов)
- •Раздел 5. Горелочные устройства (14 часов)
- •2.2. Тематический план дисциплины
- •Тематический план дисциплины для студентов очно-заочной формы обучения
- •Тематический план дисциплины для студентов заочной формы обучения
- •2.3. Структурно-логическая схема дисциплины
- •2.4. Временной график изучения дисциплины при использовании информационно-коммуникационных технологий
- •2.5. Практический блок
- •2.5.1. Перечень лабораторных работ
- •2.5.2. Перечень практических занятий
- •2.6. Балльно-рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект лекций Введение в1. Состояние и перспективы развития топливно-энергетического комплекса Российской Федерации
- •В 2. Топливо и энергетика
- •3.2.1. Топливо: виды, состав, характеристики
- •3.2.1.1. Виды и свойства органических топлив
- •Характеристика бурых углей
- •Элементный состав и характеристики древесного топлива
- •Характеристики мазута
- •3.2.1.2. Элементарный состав топлива
- •3.2.1.3. Характеристики органических топлив
- •Вопросы для самопроверки
- •3.2.2. Материальный и тепловой балансы процесса горения топлива
- •3.2.2.1. Материальный баланс процесса горения
- •3.2.2.1.1. Стехиометрические соотношения горения топлива
- •3.2.2.1.2. Количество воздуха, необходимое для сжигания топлива
- •С техиометрические соотношения горения компонентов топлива
- •3.2.2.1.3. Состав и объем продуктов сгорания
- •3.2.2.1.4. Коэффициент избытка воздуха
- •3.2.2.2. Тепловой баланс процесса горения
- •3.2.2.2.1. Анализ уравнения теплового баланса
- •3.2.2.2.2. Тепловые характеристики продуктов сгорания
- •3.2.2.2.3 Температурные характеристики продуктов сгорания
- •Вопросы для самопроверки
- •3.2.3. Теоретические основы топочных процессов
- •3.2.3.1. Основные понятия кинетики реакций горения
- •3.2.3.1.1. Параметры смесей и химические реакции
- •3.2.3.1.2. Химическое равновесие
- •3.2.3.1.3. Кинетический закон действующих масс
- •3.2.3.1.4. Закон Аррениуса
- •3.2.3.1.5. Влияние давления и состава смеси на скорость реакции
- •3.2.3.1.6. Изменение скорости реакции во времени
- •3.2.3.2. Воспламенение и горение частицы топлива
- •3.2.3.3. Смесеобразование и горение
- •3.2.3.3.1. Смессообразование
- •3.2.3.3.2. Горение твердого топлива
- •3.2.3.4. Образование оксдов азота при горении
- •Вопросы для самопроверки
- •3.2.4. Сжигание топлива
- •3.2.4.1. Подготовка топлива к сжиганию
- •3.2.4.2. Организация сжигания топлива
- •Вопросы для самопроверки
- •3.2.5. Горелочные устройства
- •3.2.5.1. Классификация и конструкции горелок
- •3.2.5.1.1. Горелки для пылевидного топлива
- •3.2.5.1.2. Форсунки для сжигания жидкого топлива
- •3.2.5.1.3. Горелки для сжигания газа
- •3.2.5.2. Размещение горелок и работа топочных устройств
- •1 − Тангенциальной; 2 − фронтовой; 3 − встречной
- •Вопросы для самопроверки
- •Заключение
- •3.3. Глоссарий
- •3.4. Методические указания к выполнению лабораторных работ
- •Охрана труда и техника безопасности
- •Работа 1. Определение влажности топлива
- •I. Цель работы
- •II. Основные теоретические положения
- •III. Описание лабораторной установки
- •IV. Порядок выполнения работы
- •Форма 1
- •V. Содержание отчета
- •Работа 2. Определение зольности топлива
- •I. Цель работы
- •II. Основные теоретические положения
- •III. Описание лабораторной установки
- •IV. Порядок выполнения работы
- •V. Содержание отчета
- •Работа 3. Определение выхода летучих из топлива
- •I. Цель работы
- •П. Основные теоретические положения
- •Перерасчет кокса на горячую массу производят по формуле, %
- •III. Описание лабораторной установки
- •IV. Порядок выполнения работы
- •Форма 3
- •V. Содержание отчета
- •Работа 4. Определение теплоты сгорания топлива
- •I. Цель работы
- •II. Основные теоретические положения
- •III. Описание лабораторной установки
- •IV. Порядок выполнения работы
- •Форма 4
- •V. Содержание отчета
- •Работа 5. Определение содержания серы в топливе (метод «смыва бомбы»)
- •I. Цель работы
- •II. Основные теоретические положения
- •III. Описание лабораторной установки
- •IV. Порядок выполнения работы
- •Форма 5
- •III. Описание лабораторной установки
- •IV. Порядок выполнения работы
- •V. Содержание отчета
- •Приложения лр
- •3.5. Методические указания к выполнению практических занятий
- •Методические указания к выполнению контрольного задания
- •4.2. Текущий контроль Тестовые задания
- •4.3. Итоговый контроль
- •Содержание
3.2.3.1.2. Химическое равновесие
Как уже указывалось, химические реакции идут в обе стороны с одновременным образованием конечных продуктов и исходных веществ. Если процесс химического реагирования длится достаточно долго, то между исходными и конечными продуктами реакции устанавливается динамическое равновесие. Так, тело, в разных местах которого поддерживается разная, но постоянная во времени температура, находится в стационарном состоянии. Если тело изолировать от внешней среды, то постепенно температура его во всем объеме выравнивается и наступает равновесное состояние. Таким образом, стационарное состояние определяется внешними условиями, а равновесие – внутренними причинами. Условия равновесия описываются с помощью функций состояния. В соответствии со вторым законом термодинамики, для функции состояния энтропии можно записать условие равновесия идеального обратимого процесса
ds – dQ/T = dQ’/T, (58)
где dQ — теплота из внешней среды; dQ'— теплота реагирования внутри системы. При V, s = const условие химического равновесия имеет вид
.
(59)
Внутренняя энергия U в этом случае называется термодинамическим потенциалом, сопряженным с параметрами V и s. Если использовать вместо V и s другие термодинамические пары, то можно получить при равновесии следующее равенство:
,
(60)
где Н=U+pV — энтальпия; F=U—Ts — изохорно-изотермический потенциал (энергия Гельмгольца); G = Н—Ts — изобарно-изотермический потенциал (энергия Гиббса). Отсюда следует, что условие равновесия одинаково для всех типов процессов (изотермических, изобарических и др.).
В зависимости от условий (температуры, давления) равновесие смещается в сторону исходных веществ или в сторону продуктов распада. Известно правило, называемое принципом Ле-Шателье-Брауна. В соответствии с этим принципом при изменении условий, в которых происходит реакция, равновесие смещается так, чтобы противодействовать изменению этих условий. Например, при горении прямая реакция идет с выделением теплоты, а обратная — с поглощением; в этом случае при повышении температуры в системе равновесие смещается в сторону исходных веществ, тепловыделение уменьшается, при понижении температуры равновесие смещается в сторону продуктов реакции. При не очень высоких температурах эти смещения незначительны.
Давление воздействует на положение равновесия, когда реакция протекает с изменением объема газов. В этом случае при повышении давления равновесие смещается в сторону уменьшения объема, а при понижении давления — в сторону увеличения объема. Так, в реакции
2Н2 + О2 = 2Н2О
с ростом давления равновесная полнота реагирования водорода с кислородом повышается, при уменьшении давления увеличивается равновесный распад водяного пара.
Принцип Ле-Шателье-Брауна показывает качественный характер смещения равновесия, но не позволяет провести количественные расчеты равновесного состава. Расчет равновесного состава является очень трудной задачей. Здесь мы укажем только общие положения такого расчета и поясним некоторые зависимости, необходимые для понимания процессов горения.
Пусть идеальная газовая смесь имеет температуру Т0, при которой известен ее состав, и объем V; в процессе реагирования смесь не обменивается массой с окружающей средой; температура смеси изменяется от Т0 до Т, при этом устанавливается новый равновесный состав. Перепишем уравнение (55) в следующем виде:
. (61)
С приближением к условию (60), т. е. при стремлении термодинамической системы к равновесию, для реакции (61) можно записать
,
(62)
где
–
изменение
изобарно-изотермического потенциала
в реакции при стандартном давлении
(1,01·104
Па) и температуре
Т;
—
изменение энтальпии, равное теплоте
реакции
Qp
при
постоянном давлении;
—
изменение
энтропии в реакции;
и
—
теплота образования и энтропия
исходных веществ и продуктов реакции
при стандартном
давлении и температуре Т;
хА
,
хА
,
…;
…
— относительные
молярные концентрации исходных веществ
и продуктов
реакции (см. (57), (54)).
Кх называется константой равновесия по относительным молярным концентрациям. Она зависит от давления и температуры. Выражение (62) есть закон действующих масс (термодинамический): при равновесии связь между массами участвующих в прямой и обратной реакциях веществ определяется константой равновесия.
Запишем выражение (62) в виде
.
(63)
Кроме константы равновесия Кх, используют константы равновесия по парциальным давлениям Кр и молярным концентрациям Кс:
,
(64)
.
(65)