
- •Выполнить до 27 ноября Сделать конспект от руки в тетради раздела «Основы цитологии»
- •1.1. Многообразие органического мира и комплекс биологических наук
- •1. Общие сведения
- •2. Предмет и задачи общей биологии
- •3. Значение биологии
- •1.2. Биологические системы и их свойства
- •1. Понятие биологической системы
- •2. Критерии биологических систем
- •Глава 2. Химическая организация жизни
- •2.1. Элементарный и молекулярный состав живого вещества
- •1. Сравнение элементарного состава живой и неживой природы
- •2. Характеристика органогенных элементов
- •3. Молекулярный состав живого вещества
- •2.2. Неорганические вещества
- •1. Типы связей между атомами, играющие важную роль в живых организмах
- •2. Содержание воды в клетке
- •3. Структура и свойства молекулы воды
- •4. Биологическое значение воды
- •2.3. Минеральные соли и их биологическая роль
- •1. Содержание солей в клетке
- •2. Биологическое значение катионов
- •3. Биологическое значение анионов
- •1. Органические вещества живой материи
- •Содержание липидов в клетке и в организме
- •3. Строение и свойства липидов
- •4. Классификация липидов
- •5. Биологические функции липидов
- •2. Содержание углеводов в живой материи
- •3. Классификация углеводов и их свойства
- •4. Биологические функции углеводов
- •2.4.3. Белки, их строение и свойства
- •1. Белки, их содержание в живом веществе и молекулярная масса
- •2. Белки – непериодические полимеры. Строение и свойства аминокислот
- •Образование пептидной связи
- •3. Первичная, вторичная, третичная и четвертичная структуры белка
- •4. Классификация белков
- •2.4.4. Биологические функции белков
- •1. Денатурация и другие свойства белков
- •2. Биологические функции белков
- •2.4.5. Нуклеиновые кислоты
- •1. Содержание в клетке, размеры молекул и молекулярная масса
- •Пиримидиновые основания
- •Пуриновые основания
- •3. Соединение нуклеотидов в цепь
- •Образование первичной структуры днк
- •4. Образование двухцепочечной молекулы днк
- •Сахарофосфатный остов днк
- •5. Правила Чаргаффа. Сущность принципа комплементарности
- •2.4.6. Классы клеточных рнк и их функции. Различия днк и рнк
- •1. Рнк и ее значение
- •2. Классы клеточных рнк и их функции
- •3. Отличия молекул днк и рнк
- •Строение клетки
- •1. Типы клеточной организации
- •2. Цитоплазма. Строение и функции оболочки
- •2. Органоиды клетки
- •3. Строение и функции ядра клетки
- •Глава 5. Воспроизведение клеток
- •5.1. Жизненный (клеточный) цикл
- •5.2. Деление клетки
- •5.2.1. Амитоз
- •5.2.2. Митоз
- •5.2.3. Мейоз
- •Вопросы к зачету по дисциплине «биология» для студентов 1 курса фармацевтического факультета
- •Контрольные тесты Химический состав клетки
- •Синтез белков
- •Эукариотическая клетка
1. Типы клеточной организации
Среди всего многообразия ныне существующих на Земле организмов выделяют две группы: вирусы и фаги, не имеющие клеточного строения; все остальные организмы представлены разнообразными клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический.
Большинство современных живых организмов относится к одному из трех царств — растений, грибов и животных, объединяемых в надцарство эукариот.
В зависимости от количества клеток, из которых состоят организмы, последние делят на одноклеточные и многоклеточные. Одноклеточные организмы состоят из одной-единственной клетки, выполняющей функции целостного организма. Многие из этих клеток устроены гораздо сложнее, чем клетки многоклеточного организма. Одноклеточными являются все прокариоты, а также простейшие, некоторые зеленые водоросли и грибы.
Тело многоклеточных организмов состоит из множества клеток, объединенных в ткани, органы и системы органов. Клетки многоклеточного организма специализированы для выполнения определенной функции и могут существовать вне организма лишь в микросреде, близкой к физиологической (например, в условиях культуры тканей). Клетки в составе многоклеточного организма различаются по размерам, форме, структуре и выполняемым функциям. Несмотря на индивидуальные особенности, все клетки построены по единому плану и имеют много общих черт.
Типичная эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.
2. Цитоплазма. Строение и функции оболочки
Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром и представляющая собой гиалоплазму — основное вещество цитоплазмы, органоиды — постоянные компоненты цитоплазмы и включения — временные компоненты цитоплазмы. Химический состав цитоплазмы разнообразен. Ее основу составляет вода (60—90% всей массы цитоплазмы). Цитоплазма богата белками, в состав ее могут входить жиры и жироподобные вещества, различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Одна из характерных особенностей цитоплазмы — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органелл клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.
Основное вещество цитоплазмы — гиалоплазма (цитозоль) — представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель легко превращается в золь и наоборот.
Клеточные оболочки эукариотических организмов имеют различное строение, но всегда к цитоплазме прилегает плазматическая мембрана, на ее поверхности образуется наружный слой. У животных он называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), у растений — клеточной стенкой из мощного слоя волокон клетчатки.
Строение мембран. Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны (модель «сэндвича»). Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. В бислое хвосты молекул в мембране обращены друг.к другу, а полярные головки — наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем 60%). Они определяют большинство специфических функций мембраны. Молекулы белков не образуют сплошного слоя, различают периферические белки — белки, располагающиеся на наружной или внутренней поверхности липидного бислоя, полуинтегральные белки — белки, погруженные в липидный бислой на различную глубину, интегральные, или трансмембранные белки — белки, пронизывающие мембрану насквозь, контактируя при этом с наружной, и с внутренней средой клетки.
Мембранные белки могут выполнять различные функции: транспорт определенных молекул, катализ реакций, происходящих на мембранах, поддержание структуры мембран, получение и преобразование сигналов из окружающей среды.
В состав мембраны может входить от 2 до 10% углеводов. Углеводный компонент мембран обычно представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину в несколько десятков нанометров. В нем происходит внеклеточное пищеварение, располагаются многие рецепторы клетки, с его помощью, по-видимому, происходит адгезия клеток.
Молекулы белков и липидов подвижны, способны перемещаться, главным образом, в плоскости мембраны. Толщина плазматической мембраны в среднем 7,5 нм.
Функции мембран.
1. Они отделяют клеточное содержимое от внешней среды.
2. Регулируют обмен веществ между клеткой и средой.
3. Делят клетки на компартаменты, предназначенные для протекания различных реакций.
4. Многие химические реакции протекают на ферментативных конвейерах, располагающихся на самих мембранах.
5. Обеспечивают связь между клетками в тканях многоклеточных организмов.
6. На мембранах располагаются рецепторные участки для распознавания внешних стимулов.
Одна из основных функций мембраны — транспортная, обеспечивающая обмен веществ между клеткой и внешней средой. Мембраны обладают свойством избирательной проницаемости, то есть хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Существуют различные механизмы транспорта веществ через мембрану. В зависимости от необходимости использования энергии для осуществления транспорта веществ различают: пассивный транспорт — транспорт веществ, идущий без затрат энергии; активный транспорт — транспорт, идущий с затратами энергии.
В основе пассивного транспорта лежит разность концентраций и зарядов. При пассивном транспорте вещества всегда перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации.
Различают три основных механизма пассивного транспорта: простая диффузия — транспорт веществ непосредственно через липидный бислой. Через него легко проходят газы, неполярные или малые незаряженные полярные молекулы. Чем меньше молекула и чем более она жирорастворима, тем быстрее она проникает через мембрану. Интересно, что полярные молекулы воды очень быстро проникают через липидный бислой. Это объясняется тем, что ее молекулы малы и электрически нейтральны. Диффузию воды через мембраны называют осмосом.
Диффузия через мембранные каналы. Заряженные молекулы и ионы (Na+, К+, Са2+, С1~) не способны проходить через липидный бислой путем простой диффузии, тем не менее, они проникают через мембрану, благодаря наличию в ней особых каналообразующих белков, формирующих поры. Большая часть воды проходит мембрану через каналы, образованные белками-аквапоринами.
Облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул. Они взаимодействуют с молекулой переносимого вещества и каким-либо способом перемещают ее сквозь мембрану. Так в клетку транспортируются сахара, аминокислоты, нуклеотиды и многие другие полярные молекулы.
Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Одной из наиболее изученных систем активного транспорта является натрий-калиевый насос. Концентрация К+ внутри клетки значительно выше, чем за ее пределами, a Na+ — наоборот. Поэтому К+ через водяные поры мембраны пассивно диффундирует из клетки, a Na+ — в клетку. Вместе с тем для нормального функционирования клетке важно поддерживать определенное соотношение ионов К+ и Na+ в цитоплазме и во внешней среде. Это оказывается возможным потому, что мембрана, благодаря наличию натрий-калиевого насоса, активно перекачивает Na+ из клетки, а К+ в клетку. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3 иона Na+ и закачивает 2 иона К+. К+ быстрее пассивно диффундирует из клетки, чем Na+ в клетку.
Клетка имеет механизмы, благодаря которым может осуществлять транспорт через мембрану крупных частиц и макромолекул. Процесс поглощения макромолекул клеткой называется эндоцитозом. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной, являющейся частью наружной цитоплазматической мембраны. Различают два типа эндоцитоза: фагоцитоз — захват и поглощение крупных частиц (например, фагоцитоз лимфоцитов, простейших и др.) и пиноцитоз — процесс захвата и поглощения капелек жидкости с растворенными в ней веществами.
Экзоцитоз — процесс выведения различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны.