Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tema_1_Chisl_posled_predel.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
1.16 Mб
Скачать

МИНИСТЕРСВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерно-экономический факультет

Кафедра эконометрики и математического моделирования (ЭиММ)

ЛЕКЦИИ ПО ДИСЦИПЛИНЕ

«Математический анализ»

для направления 080100 «Экономика»

Рязань 2012

Тема 1. Числовая последовательность, ее предел

1. Понятие числовой последовательности.

Свойства числовых последовательностей

Рассмотрим функцию , где .

Определение 1. Функцию, аргументом которой служит натуральное число n, называют числовой последовательностью.

Значения функции называются членами или элементами этой последовательности и обозначаются, как правило,

, так что , ,…, .

Сокращенно последовательность обозначается символом . Геометрически последовательность изображается на координатной прямой в виде последовательности точек, координаты которых равны соответствующим элементам последовательности.

Суммой, разностью, произведением и частным последовательностей и называются соответственно последовательности

, , …, ,…,

, , …, ,…,

, , …, , … .

Символически вышеуказанные действия записываются следующим образом:

, , .

Заметим, что значения членов последовательности не должны быть обязательно различными. Например, если , , , то соответствующие последовательности имеют вид

; ; .

В первом случае имеем просто постоянную величину, во втором члены последовательности принимают два различных значения, в третьем множество значений переменной бесконечно.

Определение 2. Последовательность назовем ограниченной сверху (снизу), если существует такое число ( ), что любой элемент этой последовательности удовлетворяет неравенству ( ).

Последовательность называется ограниченной, если она ограничена и снизу, и сверху, то есть существуют такие числа и , что для любого : . Обозначим . Тогда условие ограниченности можно записать в виде .

Например, последовательность ограничена снизу, но не ограничена сверху;

последовательность ограничена сверху, но не ограничена снизу;

последовательность ограничена, так как любой элемент этой последовательности удовлетворяет неравенству .

2. Предел числовой последовательности, его геометрический смысл. Свойства сходящихся числовых последовательностей

Определение 1. Число a называется пределом последовательности , если для любого положительного , сколь бы мало оно ни было, существует такой номер , что для всех выполняется неравенство

. (2.1)

Тот факт, что a является пределом последовательности , записывают так:

или . (2.2)

Если предел последовательности существует, то говорят также, что последовательность сходится.

Заметим, что номер N зависит от выбора , то есть .

Используя логические символы, это определение можно записать следующим образом:

.

Если изобразить числа , , и значения точками числовой оси, то получится геометрическая интерпретация предела последовательности (рис).

Какой бы малый промежуток длины с центром в точке a ни взять, все точки , начиная с некоторой из них, должны попасть внутрь этого промежутка. Особый интерес вызывает случай, когда , который рассмотрим позднее.

Рассмотрим некоторые свойства сходящихся последовательностей, сформулировав их в виде теорем.

Теорема 1. Если последовательность имеет предел, равный a, и , то и члены последовательности , начиная с некоторого номера.

■ Пусть и . Подберем число так, чтобы ; для этого достаточно взять . Но тогда по определению предела найдется такой номер N, что для выполняется , а, следовательно, тем более . ■

Теорема 2. Если и , то и , начиная с некоторого номера.

Для доказательства следует применить предыдущее утверждение, выбрав .

Теорема 3. Если последовательность имеет предел, то она ограничена.

■ Так как , то по определению предела последовательности для . Но , следовательно, ; откуда для .

Обозначим . Тогда для всех n , что и означает ограниченность последовательности . ■

Теорема 4. Последовательность не может стремиться одновременно к двум различным пределам.

■ Предположим, что и , причем . Выберем любое число , . Так как и , то существует такой номер , что для (на основании теоремы 1). С другой стороны, так как и , то существует такой номер , что для . Тогда для N, большего и , одновременно и больше c и меньше c. Полученное противоречие доказывает утверждение. ■

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]