
- •Лекция n 1 Элементы электрических цепей
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •Схемы замещения источников электрической энергии
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 2 Топология электрической цепи
- •Топологические матрицы
- •Первый закон Кирхгофа
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 3 Представление синусоидальных величин с помощью векторов и комплексных чисел
- •Действующее значение переменного тока
- •Синусоидально изменяющийся ток
- •Изображение синусоидальных эдс, напряженийи токов на плоскости декартовых координат
- •Векторное изображение синусоидальноизменяющихся величин
- •Представление синусоидальных эдс, напряжений и токов комплексными числами
- •Действующее значение синусоидальных эдс, напряжений и токов
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 4 Элементы цепи синусоидального тока. Векторныедиаграммы и комплексные соотношения для них
- •1. Резистор
- •2. Конденсатор
- •3. Катушка индуктивности
- •5. Последовательное соединение резистивного и емкостного элементов
- •6. Параллельное соединение резистивного и емкостного элементов
- •7. Параллельное соединение резистивного и индуктивного элементов
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 5 Закон Ома для участка цепи с источником эдс
- •Основы символического метода расчета цепей синусоидального тока
- •Специальные методы расчета
- •Метод контурных токов
- •Метод узловых потенциалов
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 6 Основы матричных методов расчета электрических цепей
- •Метод контурных токов в матричной форме
- •Метод узловых потенциалов в матричной форме
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 7 Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока
- •1. Резистор (идеальное активное сопротивление).
- •2. Катушка индуктивности (идеальная индуктивность)
- •3. Конденсатор (идеальная емкость)
- •Полная мощность
- •Комплексная мощность
- •Баланс мощностей
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 8 Резонансы в цепях синусоидального тока
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •Резонанс в цепи с параллельно соединенными элементами (резонанс токов)
- •Резонанс в сложной цепи
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 9 Векторные и топографические диаграммы
- •Потенциальная диаграмма
- •Преобразование линейных электрических схем
- •1, Преобразование последовательно соединенных элементов
- •2 Преобразование параллельно соединенных ветвей
- •3. Взаимные преобразования “треугольник-звезда”
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 10 Анализ цепей с индуктивно связанными элементами
- •Воздушный (линейный) трансформатор
- •Литература
- •Контрольные вопросы и задачи
Метод узловых потенциалов
Данный
метод вытекает из первого закона
Кирхгофа. В качестве неизвестных
принимаются потенциалы узлов, по
найденным значениям которых с помощью
закона Ома для участка цепи с источником
ЭДС затем находят токи в ветвях. Поскольку
потенциал – величина относительная,
потенциал одного из узлов (любого)
принимается равным нулю. Таким образом,
число неизвестных потенциалов, а
следовательно, и число уравнений равно
,
т.е. числу ветвей дерева
.
Пусть имеем схему по рис. 4, в которой
примем
.
Допустим,
что
и
известны.
Тогда значения токов на основании закона
Ома для участка цепи с источником ЭДС
Запишем уравнение по первому закону Кирхгофа для узла а:
и подставим значения входящих в него токов, определенных выше:
.
Сгруппировав соответствующие члены, получим:
.
Аналогично можно записать для узла b:
.
Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:
1.
В левой частиi-гоуравнения
записывается со знаком “+”потенциал
i-го
узла, для которого составляется данноеi-е
уравнение, умноженный на сумму
проводимостей
ветвей,
присоединенных к данномуi-му
узлу, и со знаком “-”потенциал
соседних
узлов, каждый из которых умножен на
сумму проводимостей
ветвей,
присоединенных кi-му
иk-му
узлам.
Из
сказанного следует, что все члены
,
стоящие на главной диагонали в левой
части системы уравнений, записываются
со знаком “+”, а все остальные – со
знаком “-”, причем
.
Последнее равенство по аналогии с
методом контурных токов обеспечивает
симметрию коэффициентов уравнений
относительно главной диагонали.
2.
В правой частиi-гоуравнения
записывается так называемый узловой
ток
,
равный сумме произведений ЭДС ветвей,
подходящих кi-му
узлу, и проводимостей этих ветвей. При
этом член суммы записывается со знаком
“+”, если соответствующая ЭДС направлена
кi-му
узлу, в противном случае ставится знак
“-”. Если в подходящих кi-му
узлу ветвях содержатся источники тока,
то знаки токов источников токов, входящих
в узловой ток простыми слагаемыми,
определяются аналогично.
В заключение отметим, что выбор того или иного из рассмотренных методов определяется тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее использовать метод контурных токов, так как он не требует дополнительных вычислений с использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью.
Литература
1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с
.