
- •Лекция n 11 Особенности составления матричных уравнений при наличии индуктивных связей и ветвей с идеальными источниками
- •Матрицы сопротивлений и проводимостей для цепей со взаимной индукцией
- •Решение
- •Составление матричных соотношений при наличии ветвей с идеальными источниками
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 12 Методы расчета, основанные на свойствах линейных цепей
- •Метод наложения
- •Принцип взаимности
- •Линейные соотношения в линейных электрических цепях
- •Принцип компенсации
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 13 Метод эквивалентного генератора
- •Теорема вариаций
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 14 Пассивные четырехполюсники
- •Характеристическое сопротивление и коэффициент распространения симметричного четырехполюсника
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 15 Электрические фильтры
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 16 Трехфазные электрические цепи
- •Схемы соединения трехфазных систем
- •Соединение в звезду
- •Соединение в треугольник
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n17 Расчет трехфазных цепей
- •Расчет симметричных режимов работы трехфазных систем
- •Расчет несимметричных режимов работы трехфазных систем
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 18 Применение векторных диаграмм для анализа несимметричных режимов
- •Мощность в трехфазных цепях
- •Измерение мощности в трехфазных цепях
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 19 Метод симметричных составляющих
- •Свойства симметричных составляющих токов и напряжений различных последовательностей
- •Сопротивления симметричной трехфазной цепи для токов различных последовательностей
- •Применение метода симметричных составляющих для симметричных цепей
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 20 Теорема об активном двухполюснике для симметричных составляющих
- •Выражение мощности через симметричные составляющие
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 21 Вращающееся магнитное поле
- •Магнитное поле катушки с синусоидальным током
- •Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •Магнитное поле в электрической машине
- •Принцип действия асинхронного и синхронного двигателей
- •Литература
- •Контрольные вопросы
- •Лекция n 22 Линейные электрические цепи при несинусоидальных периодических токах
- •Характеристики несинусоидальных величин
- •Разложение периодических несинусоидальных кривых в ряд Фурье
- •Свойства периодических кривых, обладающих симметрией
- •Действующее значение периодической несинусоидальной переменной
- •Мощность в цепях периодического несинусоидального тока
- •Методика расчета линейных цепей при периодических
- •Литература
- •Контрольные вопросы
- •Лекция n 23 Резонансные явления в цепях несинусоидального тока
- •Особенности протекания несинусоидальных токов через пассивные элементы цепи
- •Высшие гармоники в трехфазных цепях
- •Литература
- •Контрольные вопросы
- •Лекция n 24 Переходные процессы в линейных электрических цепях с сосредоточенными параметрами
- •Классический метод расчета
- •Корни характеристического уравнения. Постоянная времени
- •Литература
- •Контрольные вопросы
- •Способы составления характеристического уравнения
- •Общая методика расчета переходных процессов классическим методом
- •Примеры расчета переходных процессов классическим методом
- •Литература
- •Контрольные вопросы
- •Лекция n 26 Переходные процессы в цепи с одним накопителем энергии и произвольным числом резисторов
- •Переходные процессы при подключении последовательной r-l-c-цепи к источнику напряжения
- •Литература
- •Контрольные вопросы
- •Лекция n 27 Операторный метод расчета переходных процессов
- •Некоторые свойства изображений
- •Изображения производной и интеграла
- •Закон Ома в операторной форме
- •Законы Кирхгофа в операторной форме
- •Переход от изображений к оригиналам
- •Литература
- •Контрольные вопросы
- •Лекция n 28 Некоторые важные замечания к формуле разложения
- •Последовательность расчета переходных процессов операторным методом
- •Формулы включения
- •Сведение расчета переходного процесса к расчету с нулевыми начальными условиями
- •Переходная проводимость
- •Переходная функция по напряжению
- •Литература
- •Контрольные вопросы
- •Лекция n 29 Расчет переходных процессов с использованием интеграла Дюамеля
- •Последовательность расчета с использованием интеграла Дюамеля
- •Метод переменных состояния
- •Методика составления уравнений состояния
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 32 Нелинейные магнитные цепи при постоянных потоках. Основные понятия и законы магнитных цепей
- •Характеристики ферромагнитных материалов
- •Магнитомягкие и магнитотвердые материалы
- •Статическая и дифференциальная магнитные проницаемости
- •Основные законы магнитных цепей
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 33 Общая характеристика задач и методов расчета магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •Статическая и дифференциальная индуктивности катушки с ферромагнитным сердечником
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 34 Нелинейные цепи переменного тока в стационарных режимах
- •Особенности нелинейных цепей при переменных токах
- •Основные типы характеристик нелинейных элементов в цепях переменного тока
- •Графические методы расчета
- •Графический метод с использованием характеристик для мгновенных значений
- •Решение
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 35 Графический метод с использованием характеристик по первым гармоникам
- •Графический метод с использованием характеристик для действующих значений (метод эквивалентных синусоид)
- •Феррорезонансные явления
- •Аналитические методы расчета
- •Метод аналитической аппроксимации
- •Литература
- •Лекция n 36 Метод кусочно-линейной аппроксимации
- •Метод гармонического баланса
- •Литература
- •Лекция n 37 Метод эквивалентных синусоид (метод расчета по действующим значениям)
- •Катушка с ферромагнитным сердечником
- •Трансформатор с ферромагнитным сердечником
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 38 Переходные процессы в нелинейных цепях
- •Особенности расчета переходных процессов в нелинейных цепях
- •Аналитические методы расчета
- •Метод условной линеаризации
- •Метод аналитической аппроксимации
- •Метод кусочно–линейной аппроксимации
- •Литература
- •Контрольные вопросы и задачи
- •Лекция n 40 Цепи с распределенными параметрами
- •Уравнения однородной линии в стационарном режиме
- •Литература
- •Контрольные вопросы и задачи
Принцип взаимности
Принцип взаимности основан на теореме
взаимности, которую сформулируем без
доказательства: для линейной цепи токв
k – й ветви, вызванной единственной в
схеме ЭДС
,
находящейся в i – й ветви,
будет равен току
в
i – й ветви, вызванному ЭДС
,
численно равной ЭДС
,
находящейся в k – й ветви,
.
Отсюда в частности вытекает указанное
выше соотношение
.
Иными словами, основанный на теореме
взаимности принцип взаимности гласит:
если ЭДС,
действуя в некоторой ветви схемы, не
содержащей других источников, вызывает
в другой ветви ток
(см. рис. 3,а), то принесенная в эту ветвь
ЭДС
вызовет
в первой ветви такой же ток
(см.
рис. 3,б).
В качестве примера использования данного
принципа рассмотрим цепь на рис. 4,а, в
которой требуется определить ток
,
вызываемый источником ЭДС
.
Перенесение источника ЭДС
в
диагональ моста, где требуется найти
ток, трансформирует исходную схему в
цепь с последовательно-параллельным
соединением на рис. 4,б. В этой цепи
|
(7) |
где
.
В соответствии с принципом взаимности
ток
в
цепи на рис. 4,а равен току, определяемому
соотношением (7)
.
Линейные соотношения в линейных электрических цепях
При изменении в линейной электрической цепи ЭДС (тока) одного из источников или сопротивления в какой-то ветви токи в любой паре ветвей m и n будут связаны между собой соотношением
|
(8) |
где АиВ– некоторые в общем случае комплексные константы.
Действительно, в соответствии с (1) при
изменении ЭДС
в k
– й ветви для тока в m – й ветви можно
записать
|
(9) |
и для тока в n – й ветви –
|
(10) |
Здесь
и
-
составляющие токов соответственно в m
– й и n – й ветвях, обусловленные всеми
остальными источниками, кроме
.
Умножив левую и правую части (10) на
,
вычтем полученное соотношением из
уравнения (9). В результате получим
|
(11) |
Обозначив в (11)
и
,
приходим к соотношению (8).
Отметим, что в соответствии с законом Ома из уравнения (8) вытекает аналогичное соотношение для напряжений в линейной цепи.
Вкачестве примера найдем аналитическую
зависимость между токами
и
в
схеме с переменным резистором на рис.
5, где
;
;
.
Коэффициенты А и В можно рассчитать,
рассмотрев любые два режима работы
цепи, соответствующие двум произвольным
значениям
.
Выбрав в качестве этих значений
и
,
для первого случая (
)
запишем
.
Таким образом,
.
При
(режим
короткого замыкания)
,
откуда
.
На основании (8)
.
Таким образом,
.
Принцип компенсации
Принцип компенсации основан на теореме о компенсации, которая гласит: в любой электрической цепи без изменения токов в ее ветвях сопротивление в произвольной ветви можно заменить источником с ЭДС, численно равной падению напряжения на этом сопротивлении и действующей навстречу току в этой ветви.
Для доказательства теоремы выделим из
схемы произвольную ветвь с сопротивлением
,
по которой протекает ток
,
а всю остальную часть схемы условно
обозначим некоторым активным двухполюсником
А (см. рис. 6,а).
При включении в ветвь с
двух
одинаковых и действующих навстречу
друг другу источников ЭДС с
(рис.
6,б) режим работы цепи не изменится. Для
этой цепи
|
(12) |
Равенство (12) позволяет гальванически соединить точки а и c, то есть перейти к цепи на рис. 6,в. Таким образом, теорема доказана.
В заключение следует отметить, что
аналогично для упрощения расчетов любую
ветвь с известным током
можно
заменить источником тока
.