Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭЛЕКТРОНИКА.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
4.77 Mб
Скачать

Область объёмных зарядов на границе раздела полупроводников разного типа проводимости, обеднённая основными носителями заряда, называется p-n переходом.

По мере увеличения объёмного заряда, а следовательно и напряжённости поля E, диффузионный ток уменьшается, а дрейфовый ток возрастает. Этот процесс продолжается до тех пор, пока лишь незначительная часть основных носителей заряда, имеющих энергию, достаточно большую, для преодоления тормозящего действия поля, сможет перемещаться(прорываться) через границу раздела.

Когда диффузионный ток таких носителей заряда уравновесится, растущим по мере увеличения объёмного заряда, током неосновных носителей заряда, наступает состояние динамического равновесия. В этом состоянии токи в смежные области полупроводников уравновешивают друг друга, объёмный заряд перестаёт расти, суммарный ток через границу раздела равен нулю, т.к. внешняя цепь разомкнута. Итак: jp др + jn др + jp диф + jn диф = 0.

Трактовка рыбака – любителя.

Такое состояние p-n перехода называется равновесным.

Суммарная протяжённость p-n перехода, в обе стороны от границы раздела, называется шириной p-n перехода l 0. l 0 = l p + l n, где l p и l n – ширина p-n перехода, соответственно в p и n областях.

Выясним, чем определяется ширина p-n перехода и протяжённость её участков l n и l p в n и p областях. Для этого рассмотрим зонную диаграмму контакта двух полупроводников.

Здесь мы перешли от энергетической зонной диаграммы к потенциальной зонной диаграмме имея ввиду, что φ = W/q. Так удобнее для дальнейшего

рассмотрения процессов происходящих в p-n переходе при подключении к нему внешнего источника напряжения.

Так как уровень Ферми по определению не может быть разным в n и p полупроводниках, валентные зоны и зоны проводимости в них оказываются на разных потенциальных уровнях. Следовательно середины запрещённых зон в n и p областях смещены

относительно друг друга на величину

φк 0 = φEp – φEn

Эта величина называется контактной разностью потенциалов p-n перехода или его потенциальным барьером в равновесном состоянии.

Ранее были приведены выражения:

Разрешив их относительно φEp и φEn и учитывая, что nn · pn = ni2 , в общем случае получим:

О тсюда следует, что контактная разность потенциалов в p-n переходе определяется отношением концентраций одноимённых носителей заряда, т.е. отношением концентрации основных носителей заряда одной области к концентрации неосновных носителей заряда другой области. В частности для равновесного состояния:

Т ипичная величина потенциального барьера, при температуре близкой к комнатной, составляет для германиевого перехода 0,35 – 0,4В, а для кремниевого 0,65 – 0,7В.

Электрическое поле в p-n переходе определяется на основании уравнения Пуассона:

dE/dx = Q(x)/ε·ε 0, где ε – диэлектрическая проницаемость среды, а ε 0 – вакуума.

Полагая, что примеси распределены в основных полупроводниках равномерно можно считать, что

Qp(x) = -q·Nа ; -l p ≤ x ≤0, для p – области и Qд(x) = +q·Nд; 0 ≤ x ≤ l n , для n – области.

Тогда интегрируя уравнение Пуассона в соответствующих пределах, получим:

П ри других значениях x E = 0.

Приравнивая E p(0) и E n(0) , получим:

l p / l n = N а / N д .

Следовательно, протяжённость объёмного заряда от границы раздела вглубь полупроводника, обратно пропорциональна

степени его легирования. Объёмные заряды по обе стороны границы раздела должны уравновешивать друг друга.

П о определению напряженность поля E(x) = -dφ(x)/dx , следовательно интегрируя эти выражения можно определить закон изменения потенциала в p – n переходе.

Зависимости Q(x), E(x) и φ(x) приведены на рисунке.

Приравнивая φn(0) и φp(0) и учитывая, что

φк 0 = φEp – φEn найдём:

Если ln = l p переход называется симметричным, при ln < l p или ln > l p несимметричным.

Симметричные переходы получаются при Nа = Nд , в противном случае они несимметричные.

Если контакт полупроводников идеальный, как это определялось выше, и, к тому же, ширина p-n перехода пренебрежимо мала по сравнению с линейными размерами его площади, то такой p-n переход считается близким к идеальному. Рассмотренный нами p-n переход относится к так называемым ступенчатым или резким переходам из-за резкого характера изменения концентрации примесей одного элемента на другой. Плавными называют переходы в которых переход на границе раздела от примеси одного элемента к другой примеси происходит плавно.

Современные технологии и оборудование позволяют получать p-n переходы близкие к резкому,

поэтому при дальнейшем изучении процессов, происходящих в p-n переходах, будем считать их резкими.

Воздействие внешнего источника напряжения на состояние pn перехода.

Обратное и прямое смещение p-n перехода.

Рассмотренное выше состояние термодинамического равновесия можно нарушить, приложив к p-n переходу с помощью внешнего источника, напряжение в той или иной полярности. Для этого на внешних торцах полупроводников специальной технологией, препятствующей образованию ненужных в данном случае дополнительных p-n переходов, выполняются омические контакты.

Для начала будем считать, что омические контакты и области полупроводников за пределами объёмного заряда имеют пренебрежимо малую величину сопротивления по отношению к сопротивлению области объёмного заряда. При этих условиях, независимо от величины токов, протекающих по цепи, поле Eвн , создаваемое внешним источником, будет полностью сосредоточено

внутри p-n перехода. В зависимости от полярности подключения, это поле будет или вычитаться или складываться, с полем объёмного заряда. Если приложить к p-n переходу внешнее напряжение, в полярности, указанной на рисунке, то дырки p-области будут оттягиваться к отрицательному полюсу источника, а электроны n-области к положительному полюсу. При этом происходит оголение более глубинных слоёв ионов примесей в обоих полупроводниках, следовательно растёт объёмный заряд и напряжённость создаваемого им электрического поля.

К ак видно по зонной диаграмме, потенциальный барьер,

равный в равновесном состоянии φк 0 , возрастает на величину приложенного внешнего напряжения U т.е.

φк = φк 0 + U.

Такое смещение p-n перехода называется обратным. Очевидно, что это приводит к уменьшению диффузионной составляющей тока через p-n переход и увеличению дрейфового тока. Баланс токов нарушается и

в цепи протекает дрейфовый ток неосновных носителей заряда или т.н. обратный ток I обр . При возрастании обратного напряжения от 0 приблизительно до 0,1В обратный ток I обр = I диф – I др будет увеличиваться за счёт уменьшения диффузионной составляющей. При напряжениях больших 0,1В можно считать I диф = 0, и через переход будет идти только дрейфовая компонента тока которая для идеального перехода не зависит от приложенного напряжения. Поэтому её часто называют током насыщения перехода и обозначают I 0. Величина I 0 очень мала т.к. она обусловлена потоком неосновных носителей концентрация которых в высоколегированных полупроводниках незначительна.