
- •1. Классификация микропроцессоров
- •По сложности архитектуры и набору команд можно разделить мп с cisc- и risc-архитектурой.
- •6. Структура микропроцессора. Схема управления прямым доступом.
- •8. Режимы работы микропроцессорной системы.
- •9. Архитектура микропроцессорных систем. Гарвардская архитектура (принципы построения, место применения).
- •10. Организация обмена информацией в микропроцессорной системе. Принстонская архитектура (принципы построения, место применения).
- •11. Указать особенности универсальных и специализированных микропроцессоров.
- •12. Организация шинного обмена данными.
- •13. Структура памяти. Стек. Микропроцессорной системы.
- •14. Команды микропроцессора.
- •22. Циклы обмена данными по магистралям микропроцессорной системы. Стробы в управлении микропроцессорной системой
- •23. Циклы обмена данными по магистралям микропроцессорной системы. Обмена по прерываниям.
- •25. Перечислить факторы, влияющие на прохождение сигналов по магистрали.
- •27. Адресация микропроцессорной системе.
- •Запоминающие устройства можно разделить по следующим важнейшим классификационным признакам.
- •16. Аналогово-цифровой преобразователь. Привести структурную схему.
- •17. Цифро-аналоговый преобразователь. Привести структурную схему.
- •18. Внешние устройства ввода-вывода. Интерфейс rs-232.
- •20. Визуальные языки программирования.
- •21. Шифратор/дешифратор адреса.
- •26. Поясните установку терминаторов на магистраль.
- •31. Параллельные порты и дискретный ввод-вывод.
- •32. Последовательные интерфейсы и сетевые средства передачи данных.
- •33. Применение широтно-импульсной модуляции в микропроцессорах.
- •Структура памяти микропроцессорных систем;
Структура памяти микропроцессорных систем;
Микропроцессорные системы используют память для хранения команд, данных и другой информации. Системы памяти отличаются друг от друга по способам доступа к ним, по объему памяти, энергонезависимости, стоимости хранения в расчете на бит информации, времени доступа. Для функционирования компьютерной системы необходимо наличие как оперативного запоминающего устройства (ОЗУ), так и постоянного запоминающего устройства (ПЗУ), обеспечивающего сохранение информации при выключении питания. ОЗУ может быть статическим и динамическим, а ПЗУ однократно или многократно программируемым.
В ОЗУ коды в соответствии с решаемыми задачами постоянно изменяются и полностью пропадают при выключении питания. В ПЗУ хранятся управляющие работой ЭВМ стандартные программы, константы, таблицы символов и другая информация, которая сохраняется и при выключении компъютера. ОЗУ подразделяются на статическую память (SRAM), динамическую (DRAM), регистровую (RG). ПЗУ могут быть: масочными - запрограммированными на заводе изготовителе (ROM), однократно-программируемыми пользователем ППЗУ (PROM или OTP), многократно-программируемыми (репрограммируемыми) пользователем РПЗУ с ультрафиолетовым стиранием (EPROM) или c электрическим стиранием (EEPROM). Широкое распространение нашли также программируемые логические матрицы и устройства (PLM, PML, PLA, PAL, PLD, FPGA и т.д.) с большим выбором логических элементов и устройств на одном кристалле. В зависимости от типа ЗУ элементом памяти (ЭП) может быть: триггер, миниатюрный конденсатор, транзистор с "плавающим затвором", плавкая перемычка (или ее отсутствие). Упорядоченный набор ЭП образует ячейку памяти (ЯП) . Количество элементов памяти в ячейке (длина слова) обычно кратно 2n (1,4,8,16, 32,64..), причем величины свыше 8-ми достигаются, обычно, группировкой микросхем с меньшим количеством ЭП. Количество ЭП в ЯП иногда называется длиной слова. Основными характеристиками микросхем памяти являются: информационная емкость, быстродействие и энергопотребление. Емкость ЗУ чаще всего выражается в единицах кратных числу 210 = 1024 = 1K. Для длины слова равной биту (одному двоичному разряду) или байту (набору из восьми бит) эта единица называется килобит или килобайт и обозначается Kb или KB.