Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
NEORGANIChESKAYa.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
334.76 Кб
Скачать

Теория валентных связей

Рис.1. Модель перекрывания атомных орбиталей при образовании сигма-связи

Теория валентных связей (метод валентных связей, метод валентных схем, метод локализованных электронных пар) — приближённый квантовохимический расчётный метод, основанный на представлении о том, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар.

Теория валентных связей заложена в 1927 году В.Гайтлером и Ф.Лондоном на примере квантовохимического расчёта молекулы водорода. В основе теории валентных связей лежит гипотеза о том, что при образовании молекулы из атомов, последние в значительной мере сохраняют свою электронную конфигурацию, а связывание атомов достигается в результате обмена электронов между ними и спаривания спинов двух электронов, находящихся на атомных орбиталях исходных атомов. Расчёт Гайтлера — Лондона оказался весьма значительным по своим результатам в развитии квантовой химии. В подтверждение электронной октетной теории (правило октета) Г.Льюиса было показано, что химическая связь в молекуле водорода действительно осуществляется парой электронов.

Электронная пара оказывается размазанной по всему пространству молекулы с различной плотностью, причём на линии связи между ядрами имеется сгущение электронной плотности по сравнению с другими областями пространства. Это сгущение электронной плотности на линии, связывающей ядра атомов, вызывает стягивающее действие на ядра и, соответственно, приводит к образованию химической связи (рис.1). Энергия связи определяется в основном обменным интегралом, величина которого существенно зависит от степени перекрывания атомных орбиталей атомов.

Теория кристаллического поля — квантохимическая модель, в которой электронная конфигурация соединений переходных металлов описывается как состояния иона либо атома, находящегося в электростатическом поле, создаваемым окружающими его ионами, атомами или молекулами. Концепция кристаллического поля была предложена Беккерелем для описания состояния атомов в кристаллах и затем развита Гансом Бете и Джоном Ван Флеком для описания низших состояний катионов переходных металлов, окруженных лигандами - как анионами, так и нейтральными молекулами. Теория кристаллического поля была в дальнейшем объединена с теорией молекулярных орбиталей в более общую теорию поля лигандов, учитывающую частичную ковалентность связи металл-лиганд в координационных соединениях.

Теория кристаллического поля позволяет предсказать или интерпретировать оптические спектры поглощения и спектры электронного парамагнитного резонанса кристаллов и комплексных соединений, а также энтальпий гидратации и устойчивости в растворах комплексов переходных металлов.

Обзор теории кристаллического поля

Согласно ТКП, взаимодействие между переходным металлом и лигандами возникает вследствие притяжения между положительно заряженным катионом металла и отрицательным зарядом на несвязывающих электронах лиганда. Теория рассматривает изменение энергии пяти вырожденных d-орбиталей в окружении точечных зарядов лигандов. По мере приближения лиганда к иону металла, электроны лиганда становятся ближе к некоторым d-орбиталям, чем к другим, вызывая потерю вырожденности. Электроны d-орбиталей и лигандов отталкиваются друг от друга как заряды с одинаковым знаком. Таким образом, энергия тех d-электронов, которые ближе к лигандам, становится выше, чем тех, которые дальше, что приводит к расщеплению уровней энергии d-орбиталей.

На расщепление влияют следующие факторы:

  • Природа иона металла.

  • Степень окисления металла. Чем выше степень окисления, тем выше энергия расщепления.

  • Расположение лигандов вокруг иона металла.

  • Природа лигандов, окружающих ион металла. Чем сильнее эффект от лигандов, тем больше разность между высоким и низким уровнем энергии.

Самый распространённый вид координации лигандов — октаэдрическая, при которой шесть лигандов образуют октаэдр вокруг иона металла. При октаэдрическом окружении d-орбитали разделяются на две группы с разностью энергетических уровней Δокт (энергия расщепления), при этом энергия у орбиталей dxydxz и dyz будет ниже, чем у dz2 и dx2-y2, так как орбитали первой группы находится дальше от лигандов и испытывают меньшее отталкивание. Три орбитали с низкой энергией обозначаются как t2g, а две с высокой — как eg.

Следующими по распространённости являются тетраэдрические комплексы, в которых четыре лиганда образуют тетраэдр вокруг иона металла. В этом случае d-орбитали также разделяются на две группы с разностью энергетических уровней Δтетр. В отличие от октаэдрической координации, низкой энергией будут обладать орбитали dz2 и dx2-y2, а высокой —dxydxz и dyz. Кроме того, так как электроны лигандов не находятся непосредственно в направлении d-орбиталей, энергия расщепления будет ниже, чем при октаэдрической координации. С помощью ТКП также можно описать плоскоквадратную и другие геометрии комплексов.

Разность энергетических уровней Δ между двумя или более группами орбиталей зависит также от природы лигандов. Некоторые лиганды вызывают меньшее расщепление, чем другие, причины чего объясняет теория поля лигандов. Спектрохимический ряд — полученный опытным путём список лигандов, упорядоченных в порядке возрастания Δ:

I < Br < S2− < SCN < Cl < NO3 < N3 < F < OH < C2O42− < H2O < NCS < CH3CN < py < NH3 < en < bipy < phen < NO2 < PPh3 < CN < CO

Степень окисления металла также влияет на Δ. Металл с более высокой степенью окисления ближе притягивает лиганды за счёт большей разности зарядов. Лиганды, находящиеся ближе к иону металла, вызывают большее расщепление.

Методы исследования.

В Неорганической химии применяются два основных приёма исследования: препаративный метод и метод физико-химического анализа. Препаративный метод практиковался с древнейших времён. Его основу составляют проведение реакций между исходными веществами и разделение образующихся продуктов посредством перегонки, возгонки, кристаллизации, фильтрования и др. операций. Особенно распространён препаративный метод в химии комплексных соединений. Метод физико-химического анализа в основном создан Н. С. Курнаковым, его учениками и последователями. Сущность метода заключается в измерении различных физических свойств (температур начала и концакристаллизации, а также электропроводности, твёрдости и др.) систем из 2, 3 или многих компонентов. Полученные данные изображают в виде диаграмм состав-свойство. Их геометрический анализ позволяет судить о составе и природе образующихся в системе продуктов, не выделяя и не анализируя их. Физико-химический анализ указывает пути синтеза веществ, даёт научную основу процессов переработки руд, получения солей, металлов, сплавов и др. важных технических материалов. Физико-химический анализ признан во всём мире ведущим методом Неорганическая химия.   Для современной Неорганическая химия характерен необычайно обширный круг новых методов исследования строения и свойств веществ и материалов. С середины 20 в. основное внимание уделяется изучению атомного и молекулярного строения неорганических соединений прямым определением их структуры (т. е. взаимного расположения атомов в молекуле). Оно производится методами  кристаллохимии,  спектроскопии, рентгеновского структурного анализа, ядерного магнитного резонанса, ядерного квадрупольного резонанса, гамма-спектроскопии,  электронного парамагнитного резонанса и др. Большое значение имеет определение важных для техники свойств и особенностей (механические,  магнитные,электрические и оптические свойства, жаропрочность, жаростойкость, отношение к радиоактивному облучению и др.).  Неорганическая химияпревратилась в такую науку о неорганических материалах, которая основывается преимущественно на данных о строении веществ на атомном и молекулярном уровнях.    Успехи неорганической химии. Открытие трансурановых элементов, эффективное разделение (посредством хроматографии, экстрагирования и др.) редкоземельных и иных трудно разделимых элементов (например, платиновых металлов) на индивидуально-чистые, экономичное получение редких элементов и материалов из них с особыми свойствами или заданным комплексом свойств привели к качественным изменениям. Неорганической химии необходимо также отметить прогресс в технологии получения высокочистых элементов и соединений; получение из них и применение монокристаллов с определёнными свойствами (например, пьезоэлектриков, диэлектриков, полупроводников, сверхпроводников, кристаллов  для лазеров и др.) составило специальную ветвь промышленности. Особенно быстро развивается химия редких элементов. В 60-е годы возникла химия инертных газов, которые ранее считались неспособными к химическому взаимодействию; получены многие соединения Kr, Xe и Rnс фтором, окислы Xe и др.   В современной Неорганической химии очень большое внимание уделяется изучению химической связи — важнейшей характеристике любого химического соединения. С помощью физической аппаратуры удаётся как бы «видеть» химическую связь. Методы кристаллографии, порой весьма трудоёмкие, заменяются скоростными методами (с применением, например, автоматических дифрактометров в сочетании с ЭВМ). Это позволяет для неорганических соединений быстро определять межатомные расстояния (и оценить электронную плотность), на основании чего можно составить более полное представление о строении молекул и рассчитать их свойства. Ещё более подробные сведения о химической связи можно получить с помощью рентгеноэлектронной спектроскопии. Разработка новых физических методов и интерпретация получаемых результатов требуют совместной работы химиков-неоргаников, физиков и математиков. На основе представлений и методов квантовой механики всё более успешно рассматриваются проблемы строения и реакционной способности химических соединений и вопросы химической связи.   Неорганические вещества и материалы используются в различных рабочих условиях, при интенсивном воздействии среды (газов, жидкостей), механических нагрузок и др. факторов. Поэтому важное значение имеет изучение кинетики неорганических реакций, в частности при разработке новых технологий и материалов.    Практические применения. Неорганическая химия даёт новые виды горючего для авиации и космических ракет, вещества, препятствующие обледенению самолётов, а также посадочных полос на аэродромах. Она создаёт новые твёрдые и сверхтвёрдые материалы для абразивных и режущих инструментов. Так, использование в них компактного кубического бора нитрида (боразона) позволяет обрабатывать очень твёрдые сплавы при таких высоких температурах и скоростях, при которых алмазные резцы сгорают. Получены новые составы флюсов для сварки металлов; новые комплексные соединения, применяемые в технологии, сельском хозяйстве и медицине; новые строительные материалы, в том числе значительно облегчённые (например, на основе или с участием фосфатов), новые полупроводниковые и лазерные материалы, жаропрочные металлические сплавы, новые минеральные удобрения и многое другое. Неорганическая химия удовлетворяет самые разнообразные запросы практики, весьма бурно развивается и принадлежит к важнейшим основам научно-технического прогресса.

Список используемой литературы.

  1. Агафошин Н.П. Периодический закон и система элементов.

  2. Наука и жизнь №5 (2009) Евдокимов Ю.К. Истории периодического закона.

  3. Макарения А.А. Трифонов Д.Н. Периодический закон Д.И. Менделеева – М. :Просвещение.

  4. Энциклопедия неорганических материалов  / Под ред. И. М. Федорчен-ко. В 2-х т. — Киев: Укр. сов. Энциклопедия.

  5. Паулинг Л. Теория резонанса в химии / ЖВХО. — 1962.

  6. Интернет.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]