
Генная инженерия: общие сведения
В результате генной инженерии создаются искусственные генетические конструкции, в которых отдельные части генов или гены целиком объединяются в требуемой последовательности, что позволяет определять их взаимное влияние и функциональное значение и проводить экспрессию генов в новом генетическом окружении.
Обмен генетической информацией между организмами, а также составляющими их соматическими и половыми клетками является фундаментальным принципом существования всего живого.
Половой процесс освобождает организмы от необратимых изменений в виде соматических мутаций и других модификаций макромолекул, которые нарушают его нормальное функционирование в старости. Геном нового организма воссоздается в новом сочетании аллелей, что может сопровождаться расширением его адаптивных возможностей.
Известна обширная группа генетических явлений, связанная с передачей генов в пределах одного поколения организмов, а также между клетками одного и того же многоклеточного организма.
Примерами такого рода являются специфическая и неспецифическая трансдукции, осуществляемые бактериофагами, в результате чего происходит перенос небольших частей генома микроорганизмов. Большое значение в эволюции бактерий играет обмен генами с помощью конъюгативных плазмид и транспозонов, в частности, распространение генов устойчивости к различным химическим веществам как в популяциях родственных бактерий, так и между представителями таксономически удаленных друг от друга групп. Ретровирусы, по-видимому, и в природных условиях способны осуществлять горизонтальный перенос генов у млекопитающих, а с помощью Ti-плазмид происходит горизонтальный обмен генами у растений. Перемещение генетической информации и изменение характера ее экспрессии возможны в пределах самих одноклеточных и многоклеточных организмов под действием разнообразных мобильных генетических элементов, а также при воздействии мутагенных факторов окружающей среды.
Приведенные примеры показывают, что в природе обмен блоками генов, отдельными генами и их фрагментами как в пределах геномов, так и между различными геномами и организмами - обычное явление. В результате этих событий переносимые гены не только сохраняют свою способность к экспрессии в новом генетическом окружении, но и могут значительно менять ее уровень, что часто сопровождается характерным изменением фенотипа организмов.
Использование в лабораторных условиях генетических принципов, лежащих в основе природных перемещений генов, позволило разработать системы передачи генетической информации между организмами и приступить к исследованиям генетических явлений на молекулярном уровне.
Необходимость манипулирования генами диктуется задачами фундаментальных и прикладных исследований. Работа с изолированными генами позволяет определить границы генов, выделить их в чистом виде и идентифицировать элементы структуры, существенные для функционирования. Доказательством функциональной значимости выделенного участка генома может быть только его нормальная экспрессия в модельной генетической системе. Поэтому следующим этапом исследования выделенного гена является перемещение его в такую генетическую систему, где экспрессия гена легко обнаруживается. Результаты экспрессии оценивают либо по появлению белкового продукта, кодируемого исследуемым геном, либо по изменению функций биологической системы вследствие появления в ней новой ферментативной или другой активности, например, по компенсации присутствующей в этой системе мутации. В результате исследования структуры конкретного гена и моделирования его экспрессии в искусственной генетической системе можно понять особенности его функционирования в живом организме. Подобный подход может быть применен как к известным генам, которые выделяются целенаправленно, так и к неидентифицированным ранее последовательностям нуклеотидов, функциональную значимость которых определяют лишь после выделения их в чистом виде. Последний подход реализуется в так называемой обратной генетике.
Методами генной инженерии получены данные о структуре и функционировании генов разнообразных организмов, что дало возможность перейти на качественно новый уровень генетических исследований. Это, во-первых, возможность переноса гена в новое для него генетическое окружение с дальнейшей его экспрессией, что ведет к изменению свойств организма, в геном которого вводится ген (например, создание продуцентов биологически активных веществ или трансгенных организмов), а также осуществление генотерапии наследственных и приобретенных заболеваний путем искусственного замещения мутантных аллелей. Во-вторых, стало реальным конструирование новых генов путем объединения in vitro как известных, так и новых, искусственно синтезированных последовательностей нуклеотидов. Этот подход используется в белковой инженерии для исследования функциональной значимости отдельных аминокислот и доменов в полипептидных цепях ферментов, а также для создания новых белков. В-третьих, в биотехнологии появилась возможность применять изолированные гены в составе генно-инженерных конструкций для получения пищевых продуктов и биологически активных веществ белковой природы.
Для получения необходимого числа копий гена используют метод молекулярного клонирования. Сущность метода заключается в том, что нуклеотидная последовательность, которую необходимо выделить или размножить, ковалентно встраивается в самореплицирующиеся молекулы нуклеиновой кислоты, называемые векторами . Далее такая последовательность нуклеотидов в составе вектора вводится в клетки про- или эукариотического организма, и эти гибридные клетки в селективных условиях, обеспечивающих сохранение вектора внутри клеток, выращивают на питательной среде. В результате образуется клон клеток, теоретически содержащих идентичные векторные молекулы с одной и той же вставкой чужеродной последовательности нуклеотидов. Объединение молекул клонируемой последовательности нуклеотидов и вектора является рекомбинацией in vitro, поэтому такие гибридные молекулы называют рекомбинантными молекулами. Разработаны методы, позволяющие выделять определенные последовательности нуклеотидов из сложной смеси фрагментов хромосомной ДНК, а также осуществлять обмен между строго определенными фрагментами генов и другими последовательностями нуклеиновых кислот.
Большинство ферментов, применяемых для молекулярного клонирования нуклеиновых кислот, участвует в метаболизме нуклеиновых кислот in vivo. Процесс клонирования и исследования клонированных последовательностей нуклеотидов сводится к проведению in vitro ферментативных реакций с использованием очищенных ферментов и их субстратов - нуклеиновых кислот.
Различия в методах очистки ДНК и РНК определяются большей чувствительностью молекул РНК к гидролитическому расщеплению из- за присутствия у рибонуклеотидов свободных 2'-ОН групп, низкой молекулярной массой и компактной пространственной структуры. Для выделения нуклеиновых кислот в нативном состоянии необходимо использовать мягкие условия разрушения тканей биологического объекта и инактивировать гидролитические ферменты (ДНКазы или РНКазы) до того, как они успеют гидролизовать молекулы нуклеиновых кислот. Ингибиторы нуклеаз вводятся в буферные растворы до разрушения клеток или тканей. В качестве ингибиторов нуклеаз используют как неспецифические денатурирующие агенты (ионные детергенты, гидроокись ртути , гуанидинхлорид , гуанидинизотиоцианат , фенол , хлороформ и т.п.), так и специфические ингибиторы, например, ингибитор РНКазы из плаценты человека или ванадиевые комплексы рибонуклеозидов.
Работу двухцепочечной геномной ДНК усложняют значительная молекулярная масса и высокая жесткость выделяемых молекул. Следствием этого являются большая вязкость растворов высокомолекулярной ДНК и легкость ее фрагментации в растворах. При выделении ДНК допускается лишь мягкое перемешивание ее раствора в процессе депротеинизации. На первых этапах очистки применяют протеолитические ферменты ( протеиназу К из Trirachium album или проназу из Streptomyces griseus), фенол и хлороформ. Поскольку при освобождении от белков происходит одновременная очистка ДНК и РНК, для освобождения от примесей РНК применяют высокоочищенные препараты РНКаз без примесей ДНКаз (чаще всего панкреатическую РНКазу), а в случае выделения РНК - ДНКаз, не загрязненных РНКазами.
ТРАНСГЕ́ННЫЕ ЖИВОТНЫЕ, экспериментально полученные животные, содержащие во всех клетках своего организма дополнительную интегрированную с хромосомами и экспрессирующуюся чужеродную ДНК (трансген), которая передается по наследству по законам Менделя. Изредка трансген может реплицироваться и передаваться по наследству как экстрахромосомный автономно реплицирующийся фрагмент ДНК. Термин «трансгеноз» был предложен в 1973 для обозначения переноса генов одних организмов в клетки организмов других видов, в том числе далеких в эволюционном отношении. Получение трансгенных животных осуществляется с помощью переноса клонированных генов (ДНК) в ядра оплодотворенных яйцеклеток (зигот) или эмбриональных стволовых (плюрипотентных) клеток. Затем в репродуктивные органы реципиентной самки пересаживают модифицированные зиготы или яйцеклетки, у которых собственное ядро заменено на модифицированное ядро эмбриональных стволовых клеток, либо бластоцисты (эмбрионы), содержащие чужеродную ДНК эмбриональных стволовых клеток. Имеются отдельные сообщения об использовании спермиев для создания трансгенных животных, однако этот прием пока не получил широкого распространения.
Первые трансгенные животные были получены в 1974 в Кембридже (США) Рудольфом Янишем в результате инъекции в эмбрион мыши ДНК вируса обезьяны SV40. В 1980 американским ученым Жоржем Гордоном (Gordon) с соавторами было предложено использовать для создания трансгенных животных микроинъекцию ДНК в пронуклеус зиготы. Именно этот подход положил начало широкому распространению технологии получения трансгенных животных. Первые трансгенные животные в России появились в 1982. С помощью микроинъекций в пронуклеус зиготы в 1985 в США были получены первые трансгенные сельскохозяйственные животные (кролик, овца, свинья). В настоящее время для создания трансгенных животных, кроме микроинъекций, используются другие экспериментальные приемы: инфицирование клеток рекомбинантными вирусами, электропорация, «обстрел» клеток металлическими частицами с нанесенными на их поверхности рекомбинантными ДНК.
В последние годы в результате появления технологии клонирования животных возникли дополнительные возможности для создания трансгенных животных. Уже есть трансгенные животные, полученные с помощью микроинъекции генов в ядра дифференциированных клеток.
Все имеющиеся методы переноса генов пока еще не очень эффективны. Для получения одного трансгенного животного в среднем необходимы микроинъекции ДНК в 40 зигот мышей, 90 зигот козы, 100 зигот свиньи, 110 зигот овцы и в 1600 зигот коровы. Механизмы интеграции экзогенной ДНК или формирования автономных репликонов (единиц репликации, отличных от хромосом) при трансгенозе не известны. Встраивание трансгенов у каждого вновь получаемого трансгенного животного происходит в случайные участки хромосом, причем может происходить встраивание как единичной копии трансгена, так и множества копий, располагающихся, как правило, тандемно в единичном локусе одной из хромосом. Как правило, гомология между сайтом (местом) интеграции трансгена и самим трансгеном отсутствует. При использовании для трансгеноза эмбриональных стволовых клеток возможна предварительная селекция, что позволяет получать трансгенных животных с трансгеном, интегрированным в результате гомологичной рекомбинации с определенным участком генома хозяйского организма. С помощью этого подхода осуществляют, в частности, целенаправленное прекращение экспрессии определенного гена (это называют «нокаутом гена»).
Технология создания трансгенных животных является одной из наиболее бурно развивающихся биотехнологий в последние 10 лет. Трансгенные животные широко используются как для решения большого числа теоретических задач, так и в практических целях для биомедицины и сельского хозяйства. Некоторые научные проблемы не могли бы быть решены без создания трансгенных животных. На модели трансгенных лабораторных животных проводятся широкие исследования по изучению функции различных генов, регуляции их экспрессии, фенотипическому проявлению генов, инсерционному мутагенезу и др. Трансгенные животные важны для различных биомедицинских исследований. Существует множество трансгенных животных, моделирующих различные заболевания человека (рак, атеросклероз, ожирение и др.). Так, получение трансгенных свиней с измененной экспрессией генов, определяющих отторжение органов, позволит использовать этих животных для ксенотрансплантации (пересадки органов свиньи человеку). В практических целях трансгенные животные используются различными зарубежными фирмами как коммерческие биореакторы, обеспечивающие производство разнообразных медицинских препаратов (антибиотиков, факторов свертываемости крови и др.). Кроме того, перенос новых генов позволяет получать трансгенных животных, отличающихся повышенными продуктивными свойствами (например, усиление роста шерсти у овец, понижение содержания жировой ткани у свиней, изменение свойств молока) или устойчивостью к различным заболеваниям, вызываемым вирусами и другими патогенами. В настоящее время человечество уже использует множество продуктов, получаемых с помощью трансгенных животных: медицинские препараты, органы, пища.
Получение трансгенных животных - Современные методы селекции сельскохозяйственных животных базируются на использовании внутривидовой генетической изменчивости. Как правило, виды генетически изолированы друг от друга и не скрещиваются между собой, так как этому препятствует репродуктивная изоляция. В классической селекции, где используют для скрещивания животных с половой совместимостью, нельзя применять межвидовую генетическую изменчивость и создавать новые генетические формы, так как рекомбинация генов происходит только между хромосомами животного одного вида. Преодолеть биологические границы видов и использовать межвидовую генетическую изменчивость для создания новых форм животных можно с помощью переноса генов. Под переносом чужеродного гена понимают пересадку in vitro рекомбинацией конструкции гена в клетки другого животного вне зависимости от его видовой принадлежности. Если рекомбинантная конструкция гена интегрировалась в геном другого животного, то такой ген обозначается как трансген. Кодируемый трансгеном белок носит название трансгенного продукта. Животное, которое содержит в своем геноме трансген, называется трансгенным. Если животные передают трансгены своим потомкам, то образуются родственные группы трансгенных животных – трансгенные линии. Для переноса генов млекопитающих используют три метода: Микроиньекцию рекомбинантной ДНК в пронуклеос зиготы; Использование ретро вирусов в качестве векторов; Инъекцию трансформированных эмбриональных стволовых клеток в эмбрион. Все методы переноса генетической информации млекопитающих охватывают ранние этапы онтогенеза-от оплодотворенной яйциклетки до формирования бластоцисты, способной имплантироваться в матку реципиента. Перенос генов методом микроиньекции ДНК в пронуклеус зиготы. Суть метода заключается в следующем. Из яйцевода самки извлекают зиготы, освобождают их от окружающих фолликулярных клеток, инкубируют в средах Дюльбекко или Виттена под объективом микроскопа. Зиготу фиксируют микропипеткой. С противоположной стороны подводят инъекционную микропипетку, в которой находится раствор с геном. Для инъекции чужеродной ДНК в мужской пронуклеус зиготы используют плазмиды с конструкциями, промотор и структурный ген. В мужской пронуклеус инъецируют около 1 пл буферного раствора с рекомбинантной ДНК, содержащей до 100 и более копий гена. Как правило, 60-80% реконструированных зигот хорошо переносят микроманипуляции. После оценки жизнеспособности зиготы трансплантируют ложнобеременной самке-реципиенту другой генетической линии. Для подтверждения интеграции чужеродного гена от мышат, родившихся из реконструированных зигот, извлекают кусочек ткани из хвоста или печени. ДНК из ткани этих органов анализируют с помощью дот - и блот – гибридизации. В большинстве экспериментов выход трансгенных мышей, оцененных по методу дот – и блот - гибридизации, составляет 1%. Однако экспрессия чужеродного гена происходит у 5-10% полученных трансгенных мышей. Для оценки стабильности наследования чужеродных генов в процессе смены поколений методами дот - и блот - гибридизации анализируют потомство трансгенных животных. Использование ретровирусов в качестве векторов. При переносе чужеродных генов в оплодотворенные в соматические клетки животных в качестве векторов используют ретровирусы, способные внедрятся в геном эмбрионов. Ретровирусы относятся к семейству РНК-содержащих вирусов. Содержат молекулы одноцепочной линейной РНК и обратную транскриптазу (ревертазу)- фермент, с помощью которого в клетке происходит специфический синтез ДНК на РНК. В этом случае генетическая информация передается в обратном направлении от РНК к ДНК. Обратная транскриптаза в ретровирусах способна синтезировать по матрице РНК комплиментарную в ней цепь ДНК, которая служит матрицей другой комплиментарной ДНК-цепи. Вследствие этого создается двуспиральная молекула ДНК, содержащая генетическую информацию вирусной РНК. Такая ДНК интегрируется в хромосомную ДНК клетки, образуя провирус. Под провирусом понимается форма существования генома вируса, при которой этот геном объединен с генетическим материалом клетки-хозяина в единые молекулы ДНК.
После интеграции репликация провируса проходит совместно с ДНК клетки хозяина, вследствие чего провирус передается дочерним клеткам. Первые результаты по интеграции ДНК аденовируса обезьян в геном мыши были получены в России в 1981 г. Впоследствии для избежания инфекционного процесса в эмбрионе стали использовать дефектный ретровирусный вектор, конструирование которого проводится на основе клонирования терминальных фрагментов длинных концевых повторов LTR,находящихся на ДНК. В этих повторах расположены регуляторные последовательности, определяющие репликацию ДНК ретровируса и экспрессию его генов. Для синтеза вирусоспецифических ферментов необходимо присутствие вируса-помощника, у которого после микрохирургии отделяют фрагмент инкапсидации. В результате развивается инфекционный процесс, который заканчивается формированием ретровирусного вектора. Инъекция трансформированных эмбриональных стволовых клеток в эмбрион. Клеточные популяции, из которых образуются ткани-это клоны, возникши из эмбриональных стволовых клеток или клеток – родоначальниц. Стволовые клетки способны делиться и дифференцироваться в одном или нескольких направлениях. Эмбриональные стволовые клетки получают из бластоцисты мыши. Такие клетки можно размножать, культивировать in vitro, создавать банки клеток с желательными генетическими свойствами. В выделенные клетки можно инъецировать генные конструкции.
Эмбриональные стволовые клетки следует отличать от эмбриональных тератокарциномных стволовых клеток, которые можно выделить из опухоли и культивировать in vitro. При трансплантации млекопитающих тератокарциномных клеток под кожу у животных возникают тератокарциномы. Если инъецировать тератокарциномные клетки в бластоцисту или агрегировать их с бластомерами нормального эмбриона, можно получить химерных эмбрионов. Развитие их приведет к рождению жизнеспособных химерных мышей, в органах и тканях которых обнаружатся тератокарциномные клетки. У части животных эмбриональные тератокарциномные клетки образовывали репродуктивные органы, и при скрещивании таких химер в первом поколении рождались животные, генетически тождественные животным с эмбриотератокарциноми клетками. Эмбриональные тератокарциномные стволовые клетки обозначают буквами ЕС, линии эмбриональных стволовых клеток, полученные из доимплантационных эмбрионов, называют ES- клетками. Доказано, что линии ES-клеток хорошо культивируются in vitro, сохраняя при этом нормальный кариотип. Если инъецировать в бластоцисту мыши ES-клетки, длительно культивировавшиеся in vitro, то они принимают участие в развитии различных органов и тканей. В лабораторных условиях получены жизнеспособные мыши-химеры, в организме которых идентифицированы потомки линии ES-клеток, в том числе и в гонадах. Установлено, что в половых железах химерных мышей за счет потомков ES- клеток в 20% случаев образуются нормальные половые клетки. С помощью эмбриональных стволовых клеток были получены трансгенные мыши. Для получения трансгенных животных необходима генетическая трансформация выделенных ES-клеток, прежде чем последует их включение в реципиентную бластоцисту. Для проведения генетической трансформации ES-клеток используют два физических метода-электропорацию и микроинъекцию. Суть электропорации состоит в переносе ДНК непосредственно через клеточную мембрану с помощью высоковольтных электрических импульсов. Методом микроиньекции вводят чужеродный ген в ядра ES-клеток. Метод использования эмбриональных стволовых клеток, который на мышах признан классическим, создает неограниченные возможности в разведении сельскохозяйственных животных как в отношении трансплантации ES-клеток в бластоцисту, так и путем создания и селекции генотипов трансформированных клеточных линий в условиях культивирования in vitro. Получение трансгенных сельскохозяйственных животных и перспективы их использования. Успешные эксперименты по получению трансгенных мышей с новыми генетическими признаками способствовали проведению подобных работ и с другими видами млекопитающих-кроликами,овцами, свиньями, крупным рогатым скотом. Технология получения трансгенных сельскохозяйственных животных имеет свои особенности. Это связано с тем, что у крупных сельскохозяйственных животных зиготы содержат значительные количества жировых и пигментных включений, что существенно затрудняет визуализацию пронуклеусов. Для лучшей визуализации требуются дополнительные микроманипуляции-цетрифугирование, флуоресцентная микроскопия, что снижает жизнеспособность зигот и выход полноценных потомков. При введении сельскохозяйственным животным генов пептидов и белков можно получить их в больших масштабах. Такие гены в отличие получили название Gene farming. Теоретически возможно промотор коровьего или овечьего белка соединить со структурной частью желаемого гена, например гена инсулина, интерферона, фактора свертываемости и гормонов. Такие гены, как показали эксперименты, как показали эксперименты, экспрессируются в молочной железе и выделяются с молоком. Трансгенных сельскохозяйственных животных используют для продуцирования человеческого инсулина. Экспериментально было доказано, что ген инсулина человека, введенный геном мыши, функционирует в мышиных клетках поджелудочной железы. Другими словами, ген инсулина человека проявляет себя в организме мыши, как его собственный. Другой проект связан с получение фактора свертываемости крови человека из молока трансгенных овец и коров. В частности, фактор свертываемости крови человека применяется в фармакологии для лечения гемофилии. Факторы свертываемости крови – дорогостоящие медицинские препараты, поэтому использование трансгенных животных в качестве «биореактора» для производства такого чистого медицинского препарата представляет большой интерес. Получение трансгенных животных с высокой плодовитостью. Плодовитость относится к полигенным признакам. На ее формирование влияют два гонадотропных гормона ФСГ и ЛГ, которые находятся под генетическим контролем. В овцеводстве представляют изучения, выделение, клонирование и введение в геном гена многоплодия. В настоящее время проводится изучение структуры этого гена. Резистентные трансгенные животные. В ряде стран разрабатывается проект создания трансгенных животных, резистентных к ряду заболеваний. Однако известны немногие гены, контролирующие специфическую резистентность к возбудителям болезни. В селекции КРС планируются работы по введению генов резистентности к наследственным болезням, болезням конечностей, маститу и др. Получение трансгенных животных с улучшенными полезно хозяйственными признаками. Улучшить качество продуктов животноводства можно путем создания трансгенных животных, в геноме которых содержится желаемый ген. Проводятся исследования по объединению регуляторной области гена белка и информационного района гена хозяйственно полезного признака. Предложена модель снижения содержания лактозы в молоке коров и овец. Нарушение синтеза лактозы приводит к наследственной болезни - галактоземии с острыми хроническими проявлениями. Предполагается, что получение трансгенных коров и овец, несущих в геноме тканеспецифический промотор и сцепленный с ним ген лактозы на глюкозу и галактозу продуцировать молоко с высокими лечебными свойствами. В Австралии - разрабатывают проект пересадки новых генов, кодирующих два фермента. Эти ферменты ответственны за синтез аминокислот - цистина и метионина, необходимых для роста шерсти. Недостаток указанных кислот в организме овцы лимитирует рост шерсти.