Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Характеристики волокна.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
333.31 Кб
Скачать

Рассеяние

Релеевское рассеяние знакомо нам по эффекту покраснения небосвода на закате. При этом более короткие голубые длины волн рассеиваются и поглощаются сильнее, чем красные длины волн. В результате только красные длины волн достигают наших глаз, и мы видим красный закат.

Релеевское рассеяние обусловлено вариациями состава и плотности волокна, неизбежными в процессе его производства. В идеале чистое стекло имеет совершенную молекулярную структуру и, как следствие, однородную плотность. В действительности же плотность стекла не является однородной. В результате этого и возникает рассеяние.

Поскольку интенсивность рассеяния обратно пропорциональна длине волны в четвертой степени, то она быстро уменьшается по мере роста длины волны. Рассеяние определяет минимальный теоретический предел затухания, равный

  2.5 дБ при 820 нм   0.24 дБ при 1300 нм   0.012 дБ при 1550 нм

Поглощение

Поглощением называется процесс, при котором неоднородности волокна поглощают оптическую энергию и преобразуют ее в тепло. При этом свет становится более тусклым. Области существенного затухания сигнала волокна связаны с молекулами воды и большим поглощением света гидроксильными молекулами. К другим неоднородностям, обусловливающим поглощение, относятся ионы железа, меди, кобальта, ванадия и хрома. Для обеспечения низких потерь производители волокна должны поддерживать концентрацию этих ионов на уровне одной миллиардной. Современная технология производства волокна позволяет добиваться этого в контролируемых условиях особо чистого окружения. Поэтому проблема поглощения света в волокне не столь важна, как несколько лет назад.

Потери, связанные с микроизгибами

Этот вид затухания связан с небольшими вариациями профиля границы ядро/оптическая оболочка. На рисунке ниже показано, что данные вариации границы могут приводить к отражению мод высокого порядка под углами, не допускающими дальнейших отражений. При этом свет покидает волокно.

Микро неоднородности границы могут возникнуть при производстве волокна. Развитие технологий производства волокна и кабеля направлено на уменьшение этих микро неоднородностей.   

Потери и изгибы волокна

Характеристики волокна (часть 3)

Численная апертура

Численной апертурой (Numeric aperture, NA) называется способность волокна собирать лучи. Только лучи, которые инжектируются в волокно под углами, большими критического, смогут распространяться вдоль него. NA зависит от свойств материалов волокна и определяется показателями преломления ядра и оптической оболочки:

NA=(n1-n2)0.5

Отметим, что NA является безразмерной величиной.

Также можно определить величину углов, при которых свет распространяется вдоль волокна. Эти углы образуют конус, называемый входным конусом, угловой растр которого определяет максимальный угол ввода света в волокно. Входной конус связан с NA:

θ=arcsin (NA) NA=sinθ, где

θ (тета) - половина угла ввода (см. рисунок ниже) NA волокна является важной характеристикой, т.к. она указывает на то, как свет вводится в волокно и распространяется по нему. Волокно с большим значением NA хорошо принимает свет, в то время как в волокно с малым значением NA можно ввести только узконаправленный пучок света.

Как правило, волокна с широкой полосой пропускания имеют малые значения NA. Таким образом, они допускают существование малого числа мод, означающее малую дисперсию и более широкую рабочую полосу. Значения NA изменяются от 0.5 в пластиковом волокне до 0.2 в волокне со сглаженным профилем показателя преломления. Большое значение NA подразумевает большую модовую дисперсию и, как следствие, большее количество возможных световых траекторий.