Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции по электродинамике / 10. Плоские электромагнитные волны в вакууме

..doc
Скачиваний:
44
Добавлен:
02.05.2014
Размер:
113.66 Кб
Скачать

Плоские электромагнитные волны в вакууме.

Рассмотрим частный случай для полей и и найдём уравнение для и в пустоте, полагая ρ=0 и j=0.

Напишем для волн систему уравнений для пустоты:

1. Определим с - электродинамическая постоянная(зависит 2. от выбора системы единиц); , а так как

3.

4.

Возьмём производную от первого уравнения:

и подставим в уравнение 3 и получим .

Если у нас , то . Аналогично найдём .

В результате у нас получается система:

Следует, что существуют волны, с - численно равно скорости света.

Найдём решение уравнения: Решениями для этих уравнение

с учётом того что Е и В меняется по гармоническому закону

и подставим в уравнение для полей, получаем взяв вторую производную по времени, получаем для .

Обозначим , где -длина волны, а к-волновое число. Решением последнего уравнения

k- направлен в сторону распространения волны. И окончательное решение для электромагнитного поля принимает вид

Если меняется по периодическому закону:

Рассмотрим свойства плоской (на больших расстояниях от источника) волны.

Из того, что , следует:

, следовательно, и перпендикулярны волне – поперечная волна.

Аналогично и для , так как и так же перпендикулярна . А как и Взаимно располагаются.

Найдём их численное соотношение:

Распространение электромагнитной волны в однородном диэлектрике

Уравнение Максвелла в для полей однородном диэлектрике принимает вид

если обозначить уравнение запишется

- это уравнение волны, распространяющиеся в диэлектрике со скоростью υ. Поскольку , мы видим, что . А скорость распространения волны в среде связанна со скоростью ЭМВ в пустоте с\n. Следовательно, что показатель преломления . Можно эту формулу проверить экспериментально для разряжённых газов. Оптическими методами - определяя n и электрическими - определяя e. Формула хорошо выполняется.